Holooly Plus Logo

Question 10.1: The axisymmetric model is used to generate Tp and Tp∞ data f......

The axisymmetric model is used to generate T_{p{\mathrm{~and~}}}\ T_{{p}\infty} data for the parameters shown in Table 10.1.

Data, to five significant figures, are obtained as shown in Table 10.2.

Use these data and first-order Tikhonov regularization to compute the correction kernel vector H. Use a Tikhonov regularization coefficient \alpha_{T i k}= 10.

Table 10.1 Simulation parameters for Example 10.1.
Sensor depth, E, mm 0.75 Sensor radius, R, mm 0.375
Wire length, L, mm 20 Domain radius, R_{D}, mm 8
k_{w},\,\mathrm{W/m}-{K} 25 k, W/m-K 0.625
C_{w},\,\mathrm{J/m^3}-{K} 2.1E6 C,\mathrm{J/m^{3}{\mathrm{K}}} 4.2E6
q_{o},\,\mathrm{W/m^{2}} 1E5
Table 10.2 Sensor and undisturbed temperature data for heating with q=c o n s t=10^{5}\,\mathrm{W/m^{2}}.
t,s T_{p},{C} T_{p},{C} t,s T_{p},{C} T_{p},{C}
1 7.796 21.66 11 118.95 220.16
2 20.404 50.63 12 128.31 234.05
3 33.028 76.399 13 137.46 247.41
4 45.188 99.423 14 146.4 260.28
5 56.856 120.35 15 155.16 272.72
6 68.074 139.64 16 163.74 284.76
7 78.892 157.62 17 172.16 296.43
8 89.354 174.51 18 180.44 307.78
9 99.498 190.48 19 188.56 318.81
10 109.35 205.66 20 196.56 329.57
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The sensitivity matrix, X, is constructed from the differences between the entries of the T_{p} vector, prepended with a “0” (just like the Δϕ values used to compute the sensitivity matrix for heat flux estimation). The first few values of this vector of differences are:

\left\lfloor7.7962-0\ \ 20.404-7.7962\ \ 33.028-20.404\ \ 45.188-33.028\ \cdots\right\rfloor ^T

= \left\lfloor7.7962\\ 0\ \ 12.608\ \ 12.624\ \ 12.160\ \cdots\right\rfloor ^T (10.6)

These values are used to create the 20 × 20 matrix \mathbf{X}_{\phi_{p}}. The first few rows of this matrix are

{\bf X}_{\phi_{p}}= \begin{bmatrix} 7.7962 & 0 & 0 & 0 & 0 & 0 \cdots \\ 12.608 & 7.7962 & 0 & 0 & 0 & 0 \cdots \\12.624 & 12.608 & 7.7962 & 0 & 0 & 0 \cdots\\ 12.160 & 12.624 & 12.608 & 7.7962 & 0 & 0 \cdots\\ \vdots & \vdots &\ddots &\ddots &\ddots &\ddots \end{bmatrix}_{20\times 20} (10.7)

The \mathbf{X}_{\phi_{p}} matrix is used with first-order Tikhonov regularization to generate the filter matrix:

\mathbf{F}_{\phi_{p}}=\left(\mathbf{X}_{\phi_{p}}^{T}\mathbf{X}_{\phi_{p}}+\alpha_{\mathrm{Tik}}\mathbf{H}_{1}^{T}\mathbf{H}_{1}\right)^{-1}\mathbf{X}_{\phi_{p}}^{T} (10.8)

The first few entries of this matrix are:s

\mathbf{F}_{\phi_{p}}=\begin{bmatrix} 0.0584 & 0.0368 & − 0.0027 & − 0.0033 & 0.0002 & 0.0003\ \cdots \\ − 0.0576 & 0.0180 & 0.0369 & 0.0007 & − 0.0033 & − 0.0001 \cdots \\ − 0.0041 & − 0.0562 & 0.0207 & 0.0370 & 0.0005 & -0.0033 \cdots\\ 0.0056 & − 0.0003 & − 0.0563 & 0.0204 & 0.0370 & 0.0005 \cdots\\ \vdots & \vdots &\vdots &\vdots &\vdots &\vdots &\vdots & \end{bmatrix}_{20\times 20} (10.9)

The \mathbf{F}_{\phi_{p}} matrix multiplies into the “data” of \mathbf{T}_{p\infty}-\mathbf{T}_{p} in the inversion of Eq. (10.4)

\mathbf{T}_{p\infty\mathbf{-T}p}=\mathbf{X}_{\phi_{p}}\mathbf{H} (10.4)

to find the kernel vector H:

{\bf H}=\left({\bf X}_{\phi_{p}}^{T}{\bf X}_{\phi_{p}}+\alpha_{\mathrm{Tik}}{\bf H}_{1}^{T}{\bf H}_{1}\right)^{-1}{\bf X}_{\phi_{p}}^{T}\left\{{\bf T}_{p\infty}-{\bf T}_{p}\right\} =\mathbf{F}_{\phi_{p}}\{\mathbf{T}_{p\infty}-\mathbf{T}_{p}\} (10.10)

The result of these calculations is the following sequence:

Discussion:
Unlike many examples in this text, these calculations are carried out using dimensional data. Units on the entries of \mathbf{X}_{\phi_{p}} are Kelvin, and those on \mathbf{F}_{\phi_{p}} are K^{−1}. The correction kernel H is dimensionless.

Selection of the proper amount of regularization to use in the inversion is difficult. In this example, the value of \alpha_{T i k} = 10 was specified. This is a relatively large value in comparison to those used in solution of the IHCP in Chapter 7. In practice, the regularization should be large enough to produce a smooth H(t) curve. Experience suggests values from a rather broad range of the regularization parameter produce similar results.
Figure 10.4 displays results for H obtained using a range of regularization parameters. All of the values are much larger than used for IHCP solution. The results for the \alpha_{T i k}= 1 display irregularities in the result, indicating the regularization coefficient is too small. Results for \alpha_{T i k}=  100 are very smooth, but values are seen diminished compared to the nominal curve.
Another tool for selection of the regularization coefficient is consideration of a known heat flux input into the simulation model. See Example 10.2.

H_{1-7} 1.6613 1.1935 0.9624 0.879 0.8156 0.7598 0.7151
H_{8-15} 0.678 0.6468 0.6195 0.5945 0.5726 0.5532 0.5362
H_{16-20} 0.5199 0.5053 0.4902 0.4775 0.4663 0.4574
FIGURE10.4

Related Answered Questions