Question 2.SP.14: The circuit of Fig. 2-22(a) is to be used as a dc power supp......

The circuit of Fig. 2-22(a) is to be used as a dc power supply for a load RLR_L that varies from 10 Ω to 1 kΩ; vSv_S is a 10-V square wave. Find the percentage change in the average value of vLv_L over the range of load variation, and comment on the quality of regulation exhibited by this circuit.

2.22
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let TT denote the period of vSv_S.    For RL=10 ΩR_L = 10  Ω,
vL={RLRL + RSvs=1010 + 1010=5 V0t<T/2 0 (diode blocks)  T/2t<Tv_L = \begin{cases} \frac{R_L}{R_L  +  R_S}v_s = \frac{10}{10  +  10}10 = 5  \text{V} \quad\quad 0 \leq t \lt T/2 \\  0  (\text{diode blocks}) \quad\quad\quad   \quad\quad\quad T/2 \leq t \lt T \end{cases}

and so              VL0=5(T/2) + 0(T/2)T=2.5 VV_{L0} = \frac{5(T/2)  +  0 (T/2)}{T} = 2.5  \text{V}

For RL=1 kΩR_L = 1  kΩ,

vL={RLRL + RSvs=1000101010=9.9 V0t<T/2 0 (diode blocks)  T/2t<Tv_L = \begin{cases} \frac{R_L}{R_L  +  R_S}v_s = \frac{1000}{1010}10 = 9.9  \text{V} \quad\quad 0 \leq t \lt T/2 \\  0  (\text{diode blocks}) \quad\quad\quad\quad   \quad\quad T/2 \leq t \lt T \end{cases}

and so              VL0=9.9(T/2) + 0T=4.95 VV_{L0} = \frac{9.9(T/2)  +  0}{T} = 4.95  \text{V}

Then, by (2.6) and using RL=10 ΩR_L = 10  Ω as full load, we have
Reg(no-loadVL0) – (full-loadVL0)full-loadVL0\text{Reg} ≡ \frac{(\text{no-load} V_{L0})  –  (\text{full-load} V_{L0})}{\text{full-load} V_{L0}}          (2.6)
Reg=4.95 – 2.52.5(100%)=98%\text{Reg} = \frac{4.95  –  2.5}{2.5} (100 \%) = 98 \%

This large value of regulation is prohibitive for most applications.    Either another circuit or a filter network would be necessary to make this power supply useful.

Related Answered Questions

Question: 2.2

Verified Answer:

Recalling that absolute zero is -273°C, we write [...
Question: 2.SP.24

Verified Answer:

The solution is more easily found if the current s...