Question 2.SP.13: The circuit of Fig. 2-31(a) is an ‘‘inexpensive’’ voltage re......

The circuit of Fig. 2-31(a) is an ‘‘inexpensive’’ voltage regulator; all the diodes are identical and have the characteristic of Fig. 2-26(b). Find the regulation of v_o when V_b increases from its nominal value of 4 V to the value 6 V. Take R = 2  kΩ.

2.31
2.26
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We determined in Problem 2.7 that each diode can be modeled as a battery, V_F = 0.5  \text{V}, and a resistor, R_F = 500  Ω, in series. Combining the diode strings between points a and b and between points b and c gives the circuit of Fig. 2-31(b), where
V_{F1} = 2V_F = 1  \text{V} \quad   V_{F2} = 4V_F = 2  \text{V} \quad   R_{F1} = 2R_F = 100  Ω \quad   R_{F2} = 4R_F = 200  Ω

By KVL,                    I_b = \frac{V_b  –  V_{F1}  –  V_{F2}}{R  +  R_{F1}  +  R_{F2}}

whence                    V_o = V_{F2} + I_bR_{F2} = \frac{(V_b  –  V_{F1}  –  V_{F2}) R_{F2}}{R  +  R_{F1}  +  R_{F2}}

For V_{b1} = 4  \text{V} and V_{b2} = 6  \text{V},
V_{o1} = 2 +  \frac{(4  –  1  –  2)(200)}{2000  +  100  +  200} = 2.09  \text{V} \quad V_{o2} = 2 +  \frac{(6  –  1  –  2)(200)}{2000  +  100  +  200} = 2.26  \text{V}

and (2.6) gives
\text{Reg} ≡ \frac{(\text{no-load}  V_{L0})  –  (\text{full-load}  V_{L0})}{\text{full-load}  V_{L0}}          (2.6)
\text{Reg} = \frac{V_{o2}  –  V_{o1}}{V_{o1}} (100 \%) = 8.1 \%

Related Answered Questions

Question: 2.2

Verified Answer:

Recalling that absolute zero is -273°C, we write [...
Question: 2.SP.24

Verified Answer:

The solution is more easily found if the current s...