Holooly Plus Logo

Question 17.16: The clamped-clamped beam of length l, bending stiffness EI, ......

The clamped-clamped beam of length l, bending stiffness E I, and mass per unit length m_{0} is subjected to harmonic kinematical angular excitation \varphi(t)=1 \cdot \sin \theta t of the right support (Fig. 17.30). Determine the response of the beam in case of steady-state vibration.

17.30
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The origin is placed at the left end of the beam. The positive initial parameters M_{0} and Q_{0} are shown in Fig. 17.30.

At the right support (x=l) two parameters are known. They are the vertical y(l) and angular displacements \varphi(l). So from the set of Eq. (17.44) we will use the general expressions for functions y(x) and \varphi(x)

\begin{aligned}& y(x)=y_0 S_x+\varphi_0 T_x \frac{1}{k}+M_0 U_x \frac{1}{E I k^2}+Q_0 V_x \frac{1}{E I k^3}+\frac{1}{E I k^2}\left[M U_{r M}+\frac{1}{k} P V_{r P}\right] \\& \varphi(x)=y_0 V_x k+\varphi_0 S_x+M_0 T_x \frac{1}{E I k}+Q_0 U_x \frac{1}{E I k^2}+\frac{1}{E I k}\left[M T_{r M}+\frac{1}{k} P U_{r P}\right] \\& M(x)=y_0 U_x E I k^2+\varphi_0 V_x E I k+M_0 S_x+Q_0 T_x \frac{1}{k}+\left[M S_{r M}+\frac{1}{k} P T_{r P}\right] \\& Q(x)=y_0 T_x k+\varphi_0 U_x E I k^2+M_0 V_x k+Q_0 S_x+\left[M V_{r M} k+P S_{r P}\right]\end{aligned}         (17.44)

\begin{aligned}& y(x)=y_{0} S_{x}+\varphi_{0} T_{x} \frac{1}{k}+M_{0} U_{x} \frac{1}{E I k^{2}}+Q_{0} V_{x} \frac{1}{E I k^{3}}, \\& \varphi(x)=y_{0} V_{x} k+\varphi_{0} S_{x}+M_{0} T_{x} \frac{1}{E I k}+Q_{0} U_{x} \frac{1}{E I k^{2}}, \quad k=\sqrt[4]{\frac{m_{0} \theta^{2}}{E I}}\end{aligned}              (a)

Initial parameters are y_{0}=0 and \varphi_{0}=0. At the right support y(l)=y_{l}=0 and \varphi(l)=\varphi_{l}=-1; the negative sign means that support is rotated clockwise direction. Therefore from (a) we get a linear algebraic equations with respect to unknown initial parameters M_{0} and Q_{0}

\begin{aligned}& y(l)=M_{0} U \frac{1}{E I k^{2}}+Q_{0} V \frac{1}{E I k^{3}}=0, \\& \varphi(l)=M_{0} T \frac{1}{E I k}+Q_{0} U \frac{1}{E I k^{2}}=-1\end{aligned}                    (b)

Here index l at the Krylov functions is omitted, i.e., U_{x=l}=U=U(k l), T_{x=l}=T=T(k l), \ldots Solution of this set of equations is

\begin{aligned}Q(0) & =-E I k^{2} \frac{U}{U^{2}-V T} \\M(0) & =E I k \frac{V}{U^{2}-V T}\end{aligned}               (c)

The negative sign for Q(0) means that this shear trends to rotate beam around the opposite end of the beam counterclockwise. Bending moment and shear force at the right support are

\begin{aligned}& M(l)=M_{0} S-Q_{0} T \frac{1}{k}=E k \frac{S V-T U}{U^{2}-V T} \\& Q(l)=M_{0} V k-Q_{0} S=-E k^{2} \frac{U S-V^{2}}{U^{2}-V T}\end{aligned}                (d)

Now all reactions may be presented in terms of trigonometric and hyperbolic functions of dimensionless parameter u=k l. For example,

M(0)=E I k \frac{V}{U^{2}-V T}=E I \frac{u}{l} \frac{2}{2} \frac{V(u)}{U^{2}(u)-V(u) T(u)}=\frac{2 E I}{l} \cdot \frac{u}{2} \cdot \frac{\sinh u-\sin u}{1-\cosh u \cos u}=\frac{2 E I}{l} f(u)               (e)

Formulas (c-e) present the amplitude value of corresponding response functions. Dynamic response involve function \sin \theta t. Coefficient 2 E I / l presents response in case of static rotation of right clamped support through the angle \varphi=1. The complex f(u) presents the correcting function which takes into account nonuniformly distributed inertial forces along entire span. It is easy to show that, if u=0 (static loading), then function f(0)=1.0.

To determine the free vibration frequency of a clamped-clamped beam with a uniformly distributed mass, we need to consider a homogeneous system of equations (b). Nontrivial solution M_{0} \neq 0 and Q_{0} \neq 0 takes place if

D=\left|\begin{array}{cc}U & V / k \\T & U / k \end{array}\right|=0 \rightarrow U^{2}-T V=0

According to (16.26) this equation may be presented in trigonometric and hyperbolic functions as follows:

 \begin{aligned}& S T-U V=\frac{1}{2}(\cosh k x \sin k x+\sinh k x \cos k x) \\& T U-S V=\frac{1}{2}(\cosh k x \sin k x-\sinh k x \cos k x) \\& S^2-U^2=\cosh k x \cos k x ; \quad T^2-V^2=2\left(S U-V^2\right)=\sinh k x \sin k x \\& U^2-T V=\frac{1}{2}(1-\cosh k x \cos k x) ; \quad S^2-T V=\frac{1}{2}(1+\cosh k x \cos k x) \\& T^2-S U=S U-V^2=\frac{1}{2} \sinh k x \sin k x ; \quad 2 S U=T^2+V^2\end{aligned}           (16.26)

U^{2}(k l)-T(k l) V(k l)=\frac{1}{2}(1-\cosh k l \cos k l)=0

Frequency equation for fixed-fixed uniform beam becomes \cosh k l \cos k l=1.

Table A.24 contains the frequency equations, eigenvalues, and nodal points of mode shape for uniform beams with different boundary conditions. Tables A.25 and A.28 contain the analytical expressions for dynamic reactions of uniform one-span beams with distributed masses. These beams are subjected to harmonic kinematic and forced excitation. Reactions in Table A.25 are presented in terms of Krylov-Duncan function, while reactions in Table A.28 are presented in terms of hyperbolic-trigonometric functions.

Table A.25 Amplitude values of dynamical reactions of uniform beams with distributed mass m_0 ; \lambda=k l , \varphi(t)=\varphi \sin \theta t ; \Delta(t)=\Delta \sin \theta t ; \varphi, \Delta  are amplitudes of angular and linear displacements, \varphi=1, \Delta=1 ( Kiselev 1980)

 

Bending moment M(0)=M_0 Bending moment   M(l)  Shear force Q(0) Shear Force Q(l)
  \begin{gathered}\frac{4 E I}{l} f_3(\lambda) \\f_3=\frac{\lambda}{4} \frac{T U-S V}{U^2-T V}\end{gathered}   \begin{gathered}\frac{2 E I}{l} f_5(\lambda) \\f_5=\frac{\lambda}{2} \frac{V}{U^2-T V}\end{gathered}   \begin{gathered}-\frac{6 E I}{l^2} f_4(\lambda) \\f_4=\frac{\lambda}{4} \frac{S U-T^2}{U^2-T V}\end{gathered} \begin{gathered}-\frac{6 E I}{l^2} f_6(\lambda) \\f_6=\frac{\lambda^2}{6} \frac{U}{U^2-T V}\end{gathered}
  \begin{gathered} -\frac{6 E I}{l^2} f_4(\lambda) \\ f_4=\frac{\lambda}{4} \frac{S U-T^2}{U^2-T V} \end{gathered}   \begin{gathered}-\frac{6 E I}{l^2} f_8(\lambda) \\f_8=\frac{\lambda^2}{6} \frac{U}{U^2-T V}\end{gathered} \begin{gathered}\frac{12 E I}{l^3} f_7(\lambda) \\f_7=\frac{\lambda^3}{12} \frac{S T-U V}{U^2-T V}\end{gathered} \begin{gathered}\frac{12 E I}{l^3} f_9(\lambda) \\f_9=\frac{\lambda^3}{12} \frac{U}{U^2-T V}\end{gathered}
\frac{3E I}{I}f_{10}(\lambda)

 

f_{10}=\frac{\lambda}{3}\,\frac{T^{2}-V^{2}}{T U-S V}

0   \begin{gathered}-\frac{3 E I}{l^2} f_{11}(\lambda) \\f_{11}=\frac{\lambda^2}{3} \frac{U V-S T}{T U-S V}\end{gathered} \begin{gathered}-\frac{3 E I}{l^2} f_{12}(\lambda) \\f_{12}=\frac{\lambda^2}{3} \frac{T}{T U-S V}\end{gathered}
  \begin{gathered}-\frac{3 E I}{l^2} f_{11}(\lambda) \\f_{11}=\frac{\lambda^2}{3} \frac{U V-S T}{T U-S V}\end{gathered} 0 \begin{gathered}-\frac{3 E I}{l^3} f_{13}(\lambda) \\f_{13}=\frac{\lambda^2}{3} \frac{U^2-S^2}{T U-S V}\end{gathered} \begin{gathered}-\frac{3 E I}{l^3} f_{14}(\lambda) \\f_{14}=-\frac{\lambda^2}{3} \frac{S}{T U-S V}\end{gathered}
  \frac{P}{k} \frac{U_{k l} V_{k a}-V_{k l} U_{k a}}{U_{k l}^2-T_{k l} V_{k l}}   -\frac{P}{k} \frac{U_{k l} V_{k a}-V_{k l} U_{k a}}{U_{k l}^2-T_{k l} V_{k l}} P \frac{U_{k l} U_{k a}-T_{k l} V_{k a}}{U_{k l}^2-T_{k l} V_{k l}} P \frac{U_{k l} U_{k a}-T_{k l} V_{k a}}{U_{k l}^2-T_{k l} V_{k l}}

 

Table A.28 The exact dynamic reactions of uniform beams with distributed mass due by kinematic harmonic excitation of the ends supports \varphi(t)=1 \cdot \sin \theta t, \quad \Delta(t)=1 \cdot \sin \theta t , and forced excitation P \sin \theta t . The length of a beam is l , distributed mass per unit length m_0 , the bending stiffness is E I=c o n s t , the frequency excitation \theta, i=E I / l , dimensional parameter u=\sqrt[4]{m_0 \theta^2 l^4 / E I}  (Darkov 1989)
Design diagram Amplitude values of moments  Amplitude values of shear
    \begin{aligned}& M_A=4 i \psi_2(u) \\& M_B=2 i \psi_3(u)_{,}\end{aligned}    \begin{aligned}& Q_A=\frac{6 i}{l} \psi_5(u) \\& Q_B=\frac{6 i}{l} \psi_6(u)\end{aligned}
  \begin{aligned}& M_A=\frac{6 i}{l} \psi_5(u) \\& M_B=\frac{6 i}{l} \psi_6(u)\end{aligned}   \begin{aligned}& Q_A=\frac{12 i}{l^2} \psi_{10}(u) \\& Q_B=\frac{12 i}{l^2} \psi_{11}(u)\end{aligned}
  M_A=3 i \psi_1(u)   \begin{aligned}Q_A & =\frac{3 i}{l} \psi_4(u) \\Q_B & =\frac{3 i}{l} \psi_7(u)\end{aligned}
  M_A=\frac{3 i}{l} \psi_7(u)   \begin{aligned}& Q_A=\frac{3 i}{l^2} \psi_9(u), \\& Q_B=\frac{3 i}{l^2} \psi_{12}(u)\end{aligned}
  M_A=\frac{6 i}{l} \psi_4(u)   \begin{aligned}& Q_A=\frac{3 i}{l^2} \psi_8(u), \\& Q_B=\frac{3 i}{l^2} \psi_9(u)\end{aligned}
  M_A=M_B=\frac{P l}{8} \psi_{1 P}(u) \text {, }   Q_A=Q_B=\frac{P}{8} \psi_{2 P}(u)

 

 

Table A.24 Frequency equation, eigenvalue and nodal points for one-span uniform beams,    k^4=\frac{m \omega^2}{E I}
# Type of beam Frequency equation   n Eigenvalue   \lambda_n Nodal points   \xi=x / l   of mode shape   X
1 Pinned-pinned   \sin k_n l=0   \begin{aligned}& 1 \\& 2 \\& 3\end{aligned}   \begin{aligned}& 3.14159265 \\& 6.28318531 \\& 9.42477796\end{aligned}   \begin{aligned}& 0 ; 1.0 \\& 0 ; 0.5 ; 1.0 \\& 0 ; 0.333 ; 0.667 ; 1.0\end{aligned}
2 Clamped-clamped   \cos k_n l \cosh k_n l=1   \begin{aligned}& 1 \\& 2 \\& 3\end{aligned}   \begin{aligned}& 4.73004074 \\& 7.85320462 \\& 10.9956079\end{aligned} 0; 1.0
0; 0.5; 1.0
0; 0.359; 0.641; 1.0
3 Pinned-clamped   \tan k_n l-\tanh k_n l=0   \begin{aligned}& 1 \\& 2 \\& 3\end{aligned}   \begin{gathered}3.92660231 \\7.06858275 \\10.21017612\end{gathered}   \begin{array}{llll}0 ; & 1.0 & & \\0 ; & 0.440 ; & 1.0 & \\0 ; & 0.308 ; & 0.616 ; & 1.0\end{array}
4 Clamped-free   \cos k_n l \cosh k_n l=-1   \begin{aligned}& 1 \\& 2 \\& 3\end{aligned}   \begin{aligned}& 1.87510407 \\& 4.69409113 \\& 7.85475744\end{aligned}   \begin{array}{lll}0 & & \\0 ; & 0.774 & \\0 ; & 0.5001 ; & 0.868\end{array}
5 Free-free   \cos k_n l \cosh k_n l=1   \begin{aligned}& 1 , 2  \\& 3 \\& 4\end{aligned}   \begin{aligned}& 0 \\& 4.73004074 \\& 7.85320462\end{aligned} Rigid-body modes  \begin{array}{lll}0.224 ; & 0.776 & \\0.132 ; & 0.500 ; & 0.868\end{array}
6 Pinned-free   \tan k_n l-\tanh k_n l=0   \begin{aligned}& 1 \\& 2 \\& 3\end{aligned}   \begin{aligned}& 0 \\& 3.92660231 \\&7.06858275\end{aligned}   Rigid-body mode
  \begin{array}{lll}0 ; & 0.736 & \\0 ; & 0.446 ; & 0.853\end{array}

Related Answered Questions