Question 12.CSGP.122: The conversion efficiency of the Brayton cycle in Eq.12.1 wa......

The conversion efficiency of the Brayton cycle in Eq.12.1 was done with cold air properties. Find a similar formula for the second law efficiency assuming the low T heat rejection is assigned zero exergy value.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The thermal efficiency (first law) is Eq.12.1

\eta_{ TH }=\frac{\dot{ W }_{\text {net }}}{\dot{ Q }_{ H }}=\frac{ w _{\text {net }}}{ q _{ H }}=1- r _{ p }^{-( k -1) / k }

The corresponding 2^{\text {nd }} \text { law } efficiency is

\eta_{\text {II }}=\frac{w_{\text {net }}}{\Phi_{ H }}=\frac{ h _3- h _2-\left( h _4- h _1\right)}{ h _3- h _2- T _{ O }\left( s _3- s _2\right)}

where we used Φ_H = increase in flow exergy =\Psi_3-\Psi_2= h _3- h _2- T _{ o }\left( s _3- s _2\right) .

Now divide the difference h _3- h _2 out to get

\begin{aligned}\eta_{\text {II }} & =\frac{1-\frac{ h _4- h _1}{ h _3- h _2}}{1- T _{ O }\left( s _3- s _2\right) /\left( h _3- h _2\right)}=\frac{\eta_{ TH }}{1- T _{ O }\left( s _3- s _2\right) /\left( h _3- h _2\right)} \\& =\frac{\eta_{ TH }}{1- T _{ O } \frac{ C _{ P } \ln \left( T _3 / T _2\right)}{ C _{ P }\left( T _3- T _2\right)}} \\& =\frac{\eta_{ TH }}{1- T _{ O } \frac{\ln \left( T _3 / T _2\right)}{ T _3- T _2}}\end{aligned}

Comment: Due to the temperature sensitivity of Φ_H the temperatures do not reduce out from the expression.

Related Answered Questions