Question 4.4.8: The differential equation for the current i(t) in a single-l......

The differential equation for the current i(t) in a single-loop L R-series circuit is

L \frac{d i}{d t}+R i=E(t).    (16)

Determine the current i(t) when i(0)=0 and E(t) is the square-wave function shown in Figure 4.4.4.

4.4.4
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Using the result in (15)

\begin{aligned}& \mathscr{L}\{E(t)\}=\frac{1}{1-e^{-2 s}} \int_0^2 e^{-s t} E(t) d t=\frac{1}{1-e^{-s t}}\left[\int_0^1 e^{-s t} \cdot 1 d t+\int_1^2 e^{-s t} \cdot 0 d t\right] \\& =\frac{1}{1-e^{-2 s}} \frac{1-e^{-s}}{s} \quad \leftarrow 1-e^{-2 s}=\left(1+e^{-s}\right)\left(1-e^{-s}\right) \\& =\frac{1}{s\left(1+e^{-s}\right)} . & (15)\end{aligned}

of the preceding example, the Laplace transform of the \mathrm{DE} is

L s I(s)+R I(s)=\frac{1}{s\left(1+e^{-s}\right)} \quad \text { or } \quad I(s)=\frac{1 / L}{s(s+R / L)} \cdot \frac{1}{1+e^{-s}}. (17)

To find the inverse Laplace transform of the last function, we first make use of geometric series. With the identification x=e^{-s}, s>0, the geomeric series

\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots \quad becomes \quad \frac{1}{1+e^{-s}}=1-e^{-s}+e^{-2 s}-e^{-3 s}+\cdots.

From     \frac{1}{s(s+R / L)}=\frac{L / R}{s}-\frac{L / R}{s+R / L}

we can then rewrite (17) as

\begin{aligned} I(s) & =\frac{1}{R}\left(\frac{1}{s}-\frac{1}{s+R / L}\right)\left(1-e^{-s}+e^{-2 s}-e^{-3 s}+\cdots\right) \\ & =\frac{1}{R}\left(\frac{1}{s}-\frac{e^{-s}}{s}+\frac{e^{-2 s}}{s}-\frac{e^{-3 s}}{s}+\cdots\right)-\frac{1}{R}\left(\frac{ 1}{ s+R / L} -\frac{e^{-s}}{s+R / L}+\frac{e^{-2 s}}{s+R / L}-\frac{e^{-3 s}}{s+R / L}+\cdots\right) . \end{aligned}

By applying the form of the second translation theorem to each term of both series we obtain

\begin{aligned} i(t)= & \frac{1}{R}(1-\mathscr{U}(t-1)+\mathscr{U}(t-2)-\mathscr{U}(t-3)+\cdots) \\ & -\frac{1}{R}\left(e^{-R t / L}-e^{-R(t-1) / L} \mathscr{U}(t-1)+e^{-R(t-2) / L} \mathscr{U}(t-2)-e^{-R(t-3) / L} \mathscr{U}(t-3)+\cdots\right) \end{aligned}

or, equivalently,

i(t)=\frac{1}{R}\left(1-e^{-R t / L}\right)+\frac{1}{R} \sum_{n=1}^{\infty}(-1)^{n}\left(1-e^{-R(t-n) L}\right) \mathscr{U}(t-n) .

To interpret the solution, let us assume for the sake of illustration that R=1, L=1, and 0 \leq t<4. In this case

i(t)=1-e^{-t}-\left(1-e^{t-1}\right) \mathscr{U}(t-1)+\left(1-e^{-(t-2)}\right) \mathscr{U}(t-2)-\left(1-e^{-(t-3)}\right) \mathscr{U}(t-3) ;

i(t)= \begin{cases}1-e^{-t}, & 0 \leq t<1 \\ -e^{-t}+e^{-(t-1)}, & 1 \leq t<2 \\ 1-e^{-t}+e^{-(t-1)}-e^{-(t-2)}, & 2 \leq t<3 \\ -e^{-t}+e^{-(t-1)}-e^{-(t-2)}+e^{-(t-3)}, & 3 \leq t<4\end{cases}

The graph of i(t) for 0 \leq t<4, given in FIGURE 4.4.5, was obtained with the help of a CAS.

4.4.5

Related Answered Questions

Question: 4.2.5

Verified Answer:

Proceeding as in Example 4, we transform the DE by...
Question: 4.2.3

Verified Answer:

There exist unique constants A, B, ...
Question: 4.2.4

Verified Answer:

We first take the transform of each member of the ...
Question: 4.1.6

Verified Answer:

This piecewise-continuous function appears in FIGU...
Question: 4.1.4

Verified Answer:

From Definition 4.1.1 and integration by parts we ...
Question: 4.2.1

Verified Answer:

(a) To match the form given in part (b) of Theorem...
Question: 4.1.3

Verified Answer:

In each case we use Definition 4.1.1. (a) \...
Question: 4.4.7

Verified Answer:

The function E(t) is called a squar...