The differential equation for the current i(t) in a single-loop L R-series circuit is
L \frac{d i}{d t}+R i=E(t). (16)
Determine the current i(t) when i(0)=0 and E(t) is the square-wave function shown in Figure 4.4.4.
Using the result in (15)
of the preceding example, the Laplace transform of the \mathrm{DE} is
L s I(s)+R I(s)=\frac{1}{s\left(1+e^{-s}\right)} \quad \text { or } \quad I(s)=\frac{1 / L}{s(s+R / L)} \cdot \frac{1}{1+e^{-s}}. (17)
To find the inverse Laplace transform of the last function, we first make use of geometric series. With the identification x=e^{-s}, s>0, the geomeric series
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots \quad becomes \quad \frac{1}{1+e^{-s}}=1-e^{-s}+e^{-2 s}-e^{-3 s}+\cdots.
From \frac{1}{s(s+R / L)}=\frac{L / R}{s}-\frac{L / R}{s+R / L}
we can then rewrite (17) as
By applying the form of the second translation theorem to each term of both series we obtain
or, equivalently,
i(t)=\frac{1}{R}\left(1-e^{-R t / L}\right)+\frac{1}{R} \sum_{n=1}^{\infty}(-1)^{n}\left(1-e^{-R(t-n) L}\right) \mathscr{U}(t-n) .
To interpret the solution, let us assume for the sake of illustration that R=1, L=1, and 0 \leq t<4. In this case
i(t)=1-e^{-t}-\left(1-e^{t-1}\right) \mathscr{U}(t-1)+\left(1-e^{-(t-2)}\right) \mathscr{U}(t-2)-\left(1-e^{-(t-3)}\right) \mathscr{U}(t-3) ;
i(t)= \begin{cases}1-e^{-t}, & 0 \leq t<1 \\ -e^{-t}+e^{-(t-1)}, & 1 \leq t<2 \\ 1-e^{-t}+e^{-(t-1)}-e^{-(t-2)}, & 2 \leq t<3 \\ -e^{-t}+e^{-(t-1)}-e^{-(t-2)}+e^{-(t-3)}, & 3 \leq t<4\end{cases}
The graph of i(t) for 0 \leq t<4, given in FIGURE 4.4.5, was obtained with the help of a CAS.