Holooly Plus Logo

Question 4.3.7: The equation x1 + x2 + x3 = 0 defines a plane V in R^3. In t......

The equation x_1 + x_2 + x_3 = 0 defines a plane V in ℝ^3. In this plane, consider the two bases

𝔄 = (\vec{a}_1, \vec{a}_2)=\left(\begin{bmatrix}0\\1\\−1\end{bmatrix},\begin{bmatrix}1\\0\\−1\end{bmatrix}\right)  and  𝔅 =(\vec{b}_1, \vec{b}_2)=\left(\begin{bmatrix}1\\2\\−3\end{bmatrix},\begin{bmatrix}4\\-1\\−3\end{bmatrix}\right).

a. Find the change of basis matrix S from 𝔅 to 𝔄.

b. Verify that the matrix S in part (a) satisfies the equation

[\vec{b}_1 \ \ \vec{b}_2]=[\vec{a}_1 \ \ \vec{a}_2]S.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a. By inspection, we find that \vec{b}_1 = 2\vec{a}_1 + \vec{a}_2 and \vec{b}_2 = −\vec{a}_1 +4\vec{a}_2. so that

\vec{b}_1 \ \ \ \vec{b}_2

S_{ \mathfrak{B}\rightarrow \mathfrak{A} }=\left [ \begin{matrix} &2&-1&\\&1&4& \end{matrix} \right ] \begin{matrix} \ \ \ \vec{a}_1 \\ \ \ \ \vec{a}_2\end{matrix}.

b. We can verify that

\begin{bmatrix}\vec{b}_1&\vec{b}_2\end{bmatrix}=\begin{bmatrix}1&4\\2&-1\\-3&-3\end{bmatrix}=\begin{bmatrix}0&1\\1&0\\-1&-1\end{bmatrix}\begin{bmatrix}2&-1\\1&4\end{bmatrix}=\begin{bmatrix}\vec{a}_1&\vec{a}_2\end{bmatrix}S.

This equation reflects the fact that the two columns of S are the coordinate vectors of \vec{b}_1 and \vec{b}_2 with respect to the basis 𝔄=(\vec{a}_1, \vec{a}_2). We can illustrate this equation with a commutative diagram, where \vec{x} represents a vector in V:

Let us remind ourselves where the equation \vec{x} =\begin{bmatrix}\vec{b}_1&\vec{b}_2\end{bmatrix} [\vec{x}]_𝔅 comes from: If c_1, c_2 are the coordinates of \vec{x} with respect to 𝔅, then

\vec{x} = c_1\vec{b}_1 + c_2\vec{b}_2 =\begin{bmatrix}\vec{b}_1&\vec{b}_2\end{bmatrix} \begin{bmatrix}c_1\\c_2\end{bmatrix}=\begin{bmatrix}\vec{b}_1&\vec{b}_2\end{bmatrix}[\vec{x}]_𝔅.

Related Answered Questions

Question: 4.1.14

Verified Answer:

The following example shows that W isn’t closed un...
Question: 4.1.15

Verified Answer:

We can write any 2 × 2 matrix \begin{bmatri...
Question: 4.1.16

Verified Answer:

We can write any polynomial f (x) of degree ≤2 as ...
Question: 4.1.17

Verified Answer:

We need to find all matrices B =\begin{bmat...