Holooly Plus Logo

Question 16.2: The following data refer to a gas turbine with a free power ......

The following data refer to a gas turbine with a free power turbine, operating at design speed.

Assuming that the power turbine is chocked, the value of \dot{m} \sqrt{T_{04}}/P_{04} being 220, determine the design values of compressor pressure ratio and turbine inlet temperature. Assume pressure losses in combustion chamber of 3% and assume the mechanical efficiency of the gas generator rotor to be 0.98 and take the ambient temperature as 288 K. The nondimensional flows quoted are based on \dot{m} in kg/s, and P in bar and T in K, all pressures and temperatures being stagnation values.

Compressor characteristics Gas generator turbine characteristics
\eta_{\text{C}} \dot{m}\sqrt{T_{01}}/P_{01} P_{02}/P_{01} \eta_{\text{t}} \dot{m}\sqrt{T_{03}}/P_{03} P_{03}/P_{04}
6.0 250 0.83 2.8 100 0.85
5.6 270 0.84 2.5 100 0.85
5.2 290 0.83 2.2 95 0.85
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

For chocked free turbine \dot{m}\sqrt{T_{04}}/P_{04} = constant, or \dot{m}\sqrt{T_{04}}/P_{04} = 220. Compatibility of mass flow rate between two turbines

\frac{\dot{m} \sqrt{T_{04}}} {P_{04}} =\frac{\dot{m}\sqrt{T_{03}}}{P_{03}} \times \sqrt{\frac{T_{04}}{T_{03}} } \times \frac{P_{03}}{P_{04}}

where

\frac{T_{04}}{T_{03}} =1-\eta_{\text{t}}\left(1-\frac{1}{\pi_{1}^{\text{G}_{\text{t}}}} \right)

and π_t is the pressure ratio of gas generator turbine and G_{\text{t}}=(\gamma_{\text{t}}-1)/\gamma_{\text{t}} .
Define the calculated mass flow parameter of the free power turbine as (\dot{m}\sqrt{T_{04}}/P_{04})_{\text{A}}, which is calculated from Equation 1.

\left(\frac{\dot{m}\sqrt{T_{04}}}{P_{04}} \right) _{\text{A}}=\frac{\dot{m}\sqrt{T_{03}}}{P_{03}} \times \left[1-\eta_{\text{t}}\left(1-\frac{1}{\pi_1^{\text{G}_{\text{t}}}} \right) \right] ^{0.5} \times \pi_{\text{t}} \quad \quad \quad (1)

The calculated mass flow parameter of the free turbine (\dot{m}\sqrt{T_{04}}/P_{04})_{\text{A}} is plotted together with the given choked value \dot{m}\sqrt{T_{04}}/P_{04} as shown in Figure 16.13.
The intersection point gives the matching point data; namely,

\pi_{\text{t}}=\frac{P_{03}}{P_{04}} =2.438 \quad \text{ and } \quad \frac{\dot{m}\sqrt{T_{03}}}{P_{03}} =98.9667

Next, matching between the compressor and gas generator turbine may be done as follows:
Continuity equation

\frac{\dot{m}\sqrt{T_{01}}}{P_{01}} =\frac{\dot{m}\sqrt{T_{03}}}{P_{03}} \sqrt{\frac{T_{01}}{T_{03}} }\frac{P_{03}}{P_{02}} \frac{P_{02}}{P_{01}} =\frac{\dot{m}\sqrt{T_{03}}}{P_{03}} \sqrt{\frac{T_{01}}{T_{03}} }\pi_{\text{b}}\pi_{\text{c}}=98.967 \times 0.97 \sqrt{\frac{T_{01}}{T_{03}} } \times \pi_{\text{c}} \\ \frac{\dot{m}\sqrt{T_{01}}}{P_{01}} =96 \sqrt{\frac{T_{01}}{T_{03}} } \times \pi_{\text{c}} \quad \quad \quad (2)

Power balance

\dot{m}\text{C}_{\text{P}_{\text{c}}}T_{01} \times \frac{1}{\eta_{\text{C}}} \left[\pi_{\text{c}}^{\text{G}_{\text{c}}}-1\right] =\dot{m}\text{C}_{\text{P}_{\text{t}}}T_{03} \eta_{\text{m}}\eta_{\text{t}}\left[1-\left(\frac{1}{\pi_{\text{t}}} \right) ^{\text{G}_{\text{t}}}\right]

where G_{\text{c}}=(\gamma_{\text{c}}-1)/\gamma_{\text{c}},thus

\frac{T_{01}}{T_{03}} =\frac{\text{C}_{\text{P}_{\text{t}}}}{\text{C}_{\text{P}_{\text{c}}}} \eta_{\text{t}}\eta_{\text{m}}\left[1-\left(\frac{1}{\pi_{\text{t}}} \right)^{\text{G}_{\text{t}}} \right] \frac{\eta_{\text{C}}}{\pi_{\text{c}}^{\text{G}_{\text{c}}}-1} \\ \frac{T_{01}}{T_{03}} =0.19 \frac{\eta_{\text{C}}}{\pi_{\text{c}}^{\text{G}_{\text{c}}}-1} \quad \quad \quad (3)

Equations (2) and (3) are used to calculate the mass flow parameter of the compressor that is tabulated in following table against the given input values for the compressor map:

Graphical solution of both values \left(\left(\dot{m}\sqrt{T_{01}}/P_{10}\right) _{\text{calculated}} \text{ and }(\dot{m}\sqrt{T_{01}}/P_{01})_{\text{map}}\right) gives the following results for the compressor operating point:

\pi_{\text{c}}=5.6, \quad \eta_{\text{c}}=0.84, \quad \frac{T_{01}}{T_{03}} =0.2506 \quad \text{and} \quad \frac{\dot{m}\sqrt{T_{01}}}{P_{01}} =269.5

The turbine inlet temperature is then

T_{03}=\frac{T_{01}}{0.2506} =\frac{288}{0.2506} =1149.24 \text{ K}

P_{03}/P_{04} \eta_{\text{t}} \dot{m}\sqrt{T_{03}}/P_{03} \left(1-\frac{1}{\pi_{\text{t}}^{\text{Gt}}} \right) \left[1-\eta_{\text{t}}\left(1-\frac{1}{\pi_{\text{t}}^{\text{Gt}}} \right) \right] ^{0.5} \times \pi_{\text{t}} (\dot{m}\sqrt{T_{04}}/P_{04})_{\text{A}}
2.8 0.85 100 0.2269 2.5155 251.54
2.5 0.85 100 0.2047 2.2721 227.2
2.2 0.84 95 0.1789 2.0279 192.7

 

\pi_{\text{c}} \eta_{\text{c}} \frac{T_{01}}{T_{03}} \left(\frac{\dot{m}\sqrt{T_{01}}}{P_{01}} \right) _{\text{calculated}} \left(\frac{\dot{m}\sqrt{T_{01}}}{P_{01}} \right) _{\text{map}}
6.0 0.83 0.2356 279.6 250
5.6 0.84 0.2506 269.19 270
5.2 0.83 0.2618 255.5 290

 

16.13

Related Answered Questions