Question 4.DE.13: The following data refers to a single-sided centrifugal comp......

The following data refers to a single-sided centrifugal compressor:
Ambient Temperature:        288 K
Ambient Pressure:                1 bar
Hub diameter:                        0.125 m
Eye tip diameter:                   0.25 m
Mass flow:                                5.5 kg/s
Speed:                                      16,500 rpm
Assume zero whirl at the inlet and no losses in the intake duct. Calculate the blade inlet angle at the root and tip and the Mach number at the eye tip.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let: r_h = hub radius
r_t = tip radius
The flow area of the impeller inlet annulus is:
A_1 = π (r^2_t – r^2_h) = \pi (0.125^2 – 0.0625^2) = 0.038 m²
Axial velocity can be determined from the continuity equation but since the inlet density (ρ_1) is unknown a trial and error method must be followed.
Assuming a density based on the inlet stagnation condition,
ρ_1 = \frac{P_{01}} {RT_{01}} = \frac{(1)(10^5)}{(287)(288)} = 1.21 kg/m³
Using the continuity equation,
C_a = \frac{\dot{m}} {ρ_1A_1} = \frac{5.5}{(1.21)(0.038)} = 119.6 m/s
Since the whirl component at the inlet is zero, the absolute velocity at the
inlet is C_1 = C_a.
The temperature equivalent of the velocity is:
\frac{C^2_1} {2C_p} = \frac{119.6^2} {(2)(1005)} = 7.12 K
Therefore:
T_1 = T_{01} – \frac{C^2_1 }{2C_p} = 288 – 7.12 = 280.9 K

Using isentropic P–T relationship,
\frac{P_1} {P_{01}} = \left(\frac{T_1} {T_{01}}\right)^{γ/(γ-1)}, or P_1 = 10^5\left(\frac{280.9}{288}\right)^{3.5} = 92 kPa
and:
ρ_1 = \frac{P_1} {RT_1} = \frac{(92)(10^3)}{(287)(280.9)} = 1.14 kg/m³, and
C_a = \frac{5.5}{(1.14)(0.038)} = 126.69 m/s
Therefore:
\frac{C^2_1} {2C_p} = \frac{(126.96)^2}{2(1005)} = 8.02 K
T_1 = 288 – 8.02 = 279.98° K
P_1 = 10^5 \left(\frac{279.98} {288}\right)^{3.5} = 90.58 kPa
ρ_1 =\frac{(90.58)(10^3)} {(287)(279.98)} = 1.13 kg/m³
Further iterations are not required and the value of ρ_1 = 1.13 kg/m³ may be taken as the inlet density and C_a = C_1 as the inlet velocity. At the eye tip:
U_{et} = \frac{2\pi r_{et}N} {60} = \frac{2\pi (0.125)(16,500)} {60} = 216 m/s
The blade angle at the eye tip:
β_{et} = \tan^{-1} \left(\frac{U_{et}} {C_a}\right) = \tan^{-1} \left(\frac{216} {126.96}\right) = 59.56°
At the hub,
U_{eh} = \frac{2\pi (0.0625)(16,500)} {60} = 108 m/s
The blade angle at the hub:
β_{eh} = \tan^{-1} \left(\frac{108} {126.96}\right) = 40.39°

The Mach number based on the relative velocity at the eye tip using the inlet velocity triangle is:
V_1 = \sqrt{C_a^2  +  U_1^2} = \sqrt{126.96^2  +  216^2}, or V_1 = 250.6 m/s

The relative Mach number
M = \frac{V_1}{\sqrt{γRT_1}} = \frac{250.6}{\sqrt{(1.4)(287)(279.98)}} = 0.747

Related Answered Questions