Question 9.6: The following output (from MINITAB) presents the ANOVA table......

The following output (from MINITAB) presents the ANOVA table for the weld data in Table 9.1 (in Section 9.1). Which pairs of fluxes, if any, can be concluded, at the 5% level, to differ in their effect on hardness?

One-way ANOVA: A, B, C, D

Source  DF           SS               MS       F           P                                                                        Factor     3    743.40      247.800  3.87   0.029                                                                        Error      16  1023.60        63.975                                                                                                    Total      19   1767.00

S = 7.998      R-Sq = 42.07%    R-Sq(adj) = 31.21%

 

TABLE 9.1 Brinell hardness of welds using four different fluxes
 

Flux

 

Sample Values

 

Sample Mean

Sample Standard

Deviation

A 250 264 256 260 239 253.8 9.7570
B 263 254 267 265 267 263.2 5.4037
C 257 279 269 273 277 271.0 8.7178
D 253 258 262 264 273 262.0 7.4498
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

There are I = 4 levels, with J = 5 observations at each level, for a total of N = 20 observations in all. To test at level 𝛼 = 0.05, we consult the Studentized range table (Table A.7) to find q_{4,16,.05} = 4.05.

     The value of MSE is 63.975. Therefore q_{I,N−I,\alpha} \sqrt{MSE ∕ J} = 4.05\sqrt{63.975 ∕ 5} = 14.49. The four sample means (from Table 9.1) are as follows:

     There is only one pair of sample means, 271.0 and 253.8, whose difference is greater than 14.49. We therefore conclude that welds produced with flux A have a different mean hardness than welds produced with flux C. None of the other differences are significant at the 5% level.

Flux A B C D
Mean hardness 253.8 263.2 271.0 262.0

 

Related Answered Questions