Question 6.5: The following test data apply to a 7.5-hp, three-phase, 220-......

The following test data apply to a 7.5-hp, three-phase, 220-V, 19-A, 60-Hz, four-pole induction motor with a double-squirrel-cage rotor of design class C (high-starting-torque, low-starting- current type):

Test 1: No-load test at 60 Hz

Applied voltage V = 219 V line-to-line

Average phase current I_{1,\mathrm{nl}} = 5.70  A

Power P_{\mathrm{nl}}=380  W

Test 2: Blocked-rotor test at 15 Hz

Applied voltage V = 26.5 V line-to-line

Average phase current I_{1,\mathrm{bl}} = 18.57  A

Power P_{\mathrm{bl}} = 675  W

Test 3: Average dc resistance per stator phase (measured immediately after test 2)

R_1 = 0.262  Ω

Test 4: Blocked-rotor test at 60 Hz

Applied voltage V = 212 V line-to-line

Average phase current I_{1,\mathrm{bl}}= 83.3  A

Power P_{\mathrm{bl}} = 20.1  kW

Measured starting torque T_{start} = 74.2  N. m

a. Compute the no-load rotational loss and the equivalent-circuit parameters applying to the normal running conditions. Assume the same temperature as in test 3. Neglect any effects of core loss, assuming that core loss can be lumped in with the rotational losses.

b. Compute the electromechanical starting torque from the input measurements of test 4.

Assume the same temperature as in test 3.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a. From Eq. 6.37, the rotational losses can be calculated as

P_{rot} = P_{\mathrm{nl}}  –  n_{ph} I_{1,\mathrm{nl}}^2 R_1 = 380  –  3×5.70^2×0.262=354  W

The line-to-neutral no-load voltage is equal to V_{1,\mathrm{nl}}= 219/ \sqrt{3} = 126.4  V and thus, from Eqs. 6.43 and 6.44,

Q_{\mathrm{nl}}=\sqrt{S_{\mathrm{nl}}^2  –  P_{\mathrm{nl}}^2} \quad \quad \quad (6.43)

S_{\mathrm{nl}}=n_{ph} V_{1,\mathrm{nl}} I_{1,\mathrm{nl}} \quad \quad \quad (6.44)

Q_{\mathrm{nl}}= \sqrt{(n_{ph}V_{1,\mathrm{nl}} I_{1,\mathrm{nl}})^2  –  P_{\mathrm{nl}}^2} = \sqrt{(3 × 126.4 × 5.7)^2  –  380^2}=  2128  W

and thus from Eq. 6.45

X_{\mathrm{nl}}=\frac{Q_{\mathrm{nl}}}{n_{ph}I_{1,\mathrm{nl}}^2}= \frac{2128}{3×5.7^2} = 21.8  Ω

We can assume that the blocked-rotor test at a reduced frequency of 15 Hz and rated current reproduces approximately normal running conditions in the rotor. Thus, from test 2 and Eqs. 6.47 and 6.48 with

Q_{\mathrm{bl}}=\sqrt{S_{\mathrm{bl}}^2  –  P_{\mathrm{bl}}^2} \quad \quad \quad (6.47)

S_{\mathrm{bl}}=n_{ph} V_{1,\mathrm{bl}} I_{1,\mathrm{bl}} \quad \quad \quad (6.48)

V_{1,\mathrm{bl}} = 26.5/\sqrt{3} = 15.3  V

Q_{\mathrm{bl}} = \sqrt{(n_{ph}V_{1,\mathrm{bl}} I_{1,\mathrm{bl}})^2  –  P_{\mathrm{bl}}^2}= \sqrt{(3 × 15.3 × 18.57)^2 -675^2}= 520  VA

and thus from Eq. 6.49

X_{\mathrm{bl}}=\left(\frac{f_r}{f_{\mathrm{bl}}}\right) \left(\frac{Q_{\mathrm{bl}}}{n_{ph}I_{1,\mathrm{bl}}^2}\right) =\left(\frac{60}{15}\right) \left( \frac{520}{3× 18.57^2} \right) =2.01  Ω

Since we are told that this is a Class C motor, we can refer to Table 6.1 and assume that X_1= 0.3(X_1+ X_2)  \text{or}  X_1 = kX_2, where k = 0.429. Substituting into Eq. 6.57 results in a quadratic in X_2

X_2=(X_{\mathrm{bl}}  –  X_1) \left( \frac{X_{\mathrm{nl}}  –  X_1}{X_{\mathrm{nl}}  –  X_{\mathrm{bl}}}\right) \quad \quad \quad  (6.57)

k² X_2^2   +  (X_{\mathrm{bl}}(1  –  k)  –  X_{\mathrm{nl}}(1 + k))X_2 + X_{\mathrm{nl}}X_{\mathrm{bl}} = 0

or

(0.429)^2X_2 + (2.01(1  –  0.429)  –  22.0(1 + 0.429))X_2 + 22.0(2.01) \\ = 0.184X_2^2   –  30.29X_2 + 44.22 = 0

Solving gives two roots: 1.48 and 163.1. Clearly, X_2 must be less than X_{\mathrm{nl}} and hence it is easy to identify the proper solution as

X_2 = 1.48 Ω

and thus

X_1 = 0.633  Ω

From Eq. 6.58,

X_m = X_{\mathrm{nl}}  –  X_1 = 21.2  Ω

R_{\mathrm{bl}} can be found from Eq. 6.50 as

R_{\mathrm{bl}}=\frac{P_{\mathrm{bl}}}{n_{ph}I_{1,\mathrm{bl}}^2}=\frac{675}{3× 18.57^2}=0.652  Ω

and thus from Eq. 6.56

\begin{aligned}R_2 &= ( R_{\mathrm{bl}}  –  R_1 ) \left( \frac{X_2 +X_m}{X_m} \right) ^2 \\& = (0.652  –  0.262) \left( \frac{22.68}{21.2} \right) ^2 = 0.447  Ω\end{aligned}

The parameters of the equivalent circuit for small values of slip have now been calculated.

b. Although we could calculate the electromechanical starting torque from the equivalent- circuit parameters derived in part (a), we recognize that this is a double-squirrel-cage motor and hence these parameters (most specifically the rotor parameters) will differ significantly under starting conditions from their low-slip values calculated in part (a). Hence, we will calculate the electromechanical starting torque from the rated-frequency, blocked-rotor test measurements of test 4.

From the power input and stator I^2R losses, the air-gap power P_{\text{gap}} is

P_{\text{gap}} = P_{\mathrm{bl}}  –  n_{ph}I^2_{1,\mathrm{bl}}R_1 = 20,100  –  3 × 83.3^2 × 0.262 = 14,650  W

Since this is a four-pole machine, the synchronous speed can be found from Eq. 6.26 as

ω_s=\frac{4πf_e}{poles}=\left( \frac{2}{poles}\right) ω_e \quad \quad \quad (6.26)

 ω_s = 188.5  rad/sec. Thus, from Eq. 6.25 with s = 1

T_{mech} = \frac{P_{\text{mech}}}{ω_m}=\frac{P_{\text{gap}}}{ω_s}=\frac{n_{ph}I_2^2(R_2/s)}{ω_s} \quad \quad \quad (6.25)

T_{start} = \frac{P_{\text{gap}}}{ω_s}=\frac{14,650}{188.5} = 77.7  N  ·  m

The test value, T_{start}= 74.2  N · m is a few percent less than the calculated value because the calculations do not account for the power absorbed in the stator core loss or in stray-load losses.

Table 6.1 Empirical distribution of leakage reactances in induction motors.
Fraction of
\bf X_1 + X_2
Motor class Description \bf X_1
\bf X_2
A Normal starting torque, normal starting current 0.5 0.5
B Normal starting torque, low starting current 0.4 0.6
C High starting torque, low starting current 0.3 0.7
D High starting torque, high slip 0.5 0.5
Wound rotor Performance varies with rotor resistance 0.5 0.5
Source: IEEE Standard 112.

Related Answered Questions