The gas phase decomposition of ethanal occurs according to
{\mathrm{CH}}_{3}{\mathrm{CHO}}(\mathrm{g})\to{\mathrm{CH}}_{4}(\mathrm{g})+{\mathrm{CO}}(\mathrm{g})
The major products are \mathrm{CH}_{4} and CO, with \mathrm{C}_{2}\mathrm{H}_{6},\,\mathrm{CH}_{3}\mathrm{COCOCH}_{3}{\mathrm{~and~CH}_{3}C O C H}_{3} being minor products. The radicals {\mathrm{CH}}_{3}^{•},{\mathrm{CH}}_{3}{\mathrm{CO}}^{•}{\mathrm{~and~}}\mathrm{CHO}^{•} are present. Deduce a mechanism which fits these facts.
{\mathrm{CH}}_{3}{\mathrm{CHO}}\to{\mathrm{CH}}_{3}^{•}+{\mathrm{CHO}}^{•}
confirmed by the presence of the two radicals.
{\mathrm{CH}}_{3}^{•}+{\mathrm{CH}}_{3}{\mathrm{CHO}}\to{\mathrm{CH}}_{4}+{\mathrm{CH}}_{3}{\mathrm{CO}}^{•}
is more likely than
{\mathrm{CH}}_{3}^{•}+{\mathrm{CH}}_{3}{\mathrm{CHO}}\to{\mathrm{CH}}_{4}+~^{•}{\mathrm{CH}}_{2}{\mathrm{CHO}}
{\mathrm{CH}}_{3}{\mathrm{CO}}^{•}\to{\mathrm{CH}}_{3}^{•}+{\mathrm{CO}}
{\mathrm{CH}}_{3}^{•}+{\mathrm{CH}}_{3}^{•}\to{\mathrm{C_{2}H}}_{6}
\mathrm{CH}_{3}^{•}+\mathrm{{CH}}_{3}\mathrm{CO}^{•}\to\mathrm{CH}_{3}\mathrm{COCH}_{3}
\mathrm{CH}_{3}\mathrm{CO}^{•}+\mathrm{CH}_{3}\mathrm{CO}^{•}\to\mathrm{CH}_{3}\mathrm{COCOCH}_{3}
The last two minor products confirm that H abstraction occurs on the CHO group of {\mathrm{CH}}_{3}{\mathrm{CHO}}.
A possible mechanism which fits the experimental facts:
\mathrm{CH}_{3}\mathrm{CHO}\stackrel{k_{1}}{\rightarrow}C H_{3}^{•}+\mathrm{CHO}^{•}
\mathrm{CH}_{3}^{•}+\mathrm{CH}_{3}\mathrm{CHO}\stackrel{k_{2}}{\longrightarrow}\mathrm{CH}_{4}+\mathrm{CH}_{3}\mathrm{CO}^{•}
\mathrm{CH}_{3}\mathrm{CO}^{•}\stackrel{k_{3}}{\longrightarrow}\mathrm{CH}_{3}^{•}+\mathrm{CO}
\mathrm{CH}_{3}^{•}+\mathrm{CH}_{3}^{•}\stackrel{k_{4}}{\rightarrow}C_{2}\mathrm{H}_{6}
\mathrm{CH}_{3}^{•}+\mathrm{CH}_{3}\mathrm{CO}^{•}\stackrel{k_{5}}{\rightarrow}\mathrm{CH}_{3}\mathrm{COCH}_{3}
\mathrm{CH}_{3}\mathrm{CO}^{•}+\mathrm{CH}_{3}\mathrm{CO}^{•}\stackrel{k_{6}}{\rightarrow}\mathrm{CH}_{3}\mathrm{COCOCH}_{3}