Holooly Plus Logo

Question 14.5: The impeller of a radial-flow water pump has an outer radius......

The impeller of a radial-flow water pump has an outer radius of 200 mm, average width of 50 mm, and a tail angle β_2 = 20°, Fig. 14–9. If the flow onto the blades is in the radial direction, and the blades are rotating at 100 rad/s, determine the ideal power. The discharge is 0.12 m³/s.

EXAMPLE 14.5
Fig. 14-9
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

I

Fluid Description. We assume steady, incompressible flow and will use average velocities. Here \rho_w = 1000 kg/m³.
Kinematics. The power can be determined using Eq. 14–13, with \alpha_1 = 90°. First we must find U_2, \,V_{r2}, and \alpha_2. The speed of the impeller at the exit is

\dot{W}_{pump}  = T ω = \rho Q (U_2V_{r2} \cot α_2  –  U_1V_{r1} \cot α_1)     (14-13)

U_{2}=\omega r_{2}=(100\,\mathrm{rad/s})(0.2\,\mathrm{m})=20\,\mathrm{m/s}

Also, the radial component of velocity V_{r2} can be found from Q = V_{r2} A_2.

0.12\;{\mathrm{m}}^{3}/{\mathrm{s}}=V_{r2}[2\pi(0.2\,{\mathrm{m}})\,(0.05\,{\mathrm{m}})]\quad\quad\quad\quad\quad V_{r2}=1.910\,{\mathrm{m}}/{\mathrm{s}}

As shown in Fig. 14–9,

V_{r2}=\,U_{2}\,-\,V_{r2}\cot20^{\circ}=20\,{\mathrm{m/s}}\,-\,(1.910\,{\mathrm{m/s}})\,\mathrm{cot}\,20^{\circ}=\,14.75\,{\mathrm{m/s}}

Therefore,

\tan\alpha_{2}=\frac{V_{r2}}{V_{t2}}=\,\left(\frac{1.910\,\mathrm{m/s}}{14.75\,\mathrm{m/s}}\right);\quad\alpha_{2}=7.376^{\circ}

Ideal Power

\dot W_{\mathrm{pump}}=\rho Q(U_{2}V_{r2}\cot\alpha_{2}-U_{1}V_{r1}\cot\alpha_{1})\\=\,(1000\,{\rm k g/m^{3}})\,(0.12\,{\rm m^{3}}/{\rm s})\,[(20\,{\rm m}/{\rm s})\,(1.910\,{\rm m}/{\rm s}){\cot}\,7.376^{\circ}-{0}]\\=\;35.41\;(10^{3})\;\mathrm{W}=\;35.4\;\mathrm{kW}

II

The ideal power can also be related to the ideal pump head by Eq. 14–15, \dot W_{pump} = Q\gamma h_{pump}. First we must find h_{pump} by using Eq. 14–19. This gives

h_{\mathrm{pump}}={\frac{U_{2}{}^{2}}{g}}-{\frac{U_{2}Q\cot\beta_{2}}{2\pi r_{2}b g}}\\=\frac{(20~\mathrm{m/s)}^{2}}{9.81~\mathrm{m/s}^{2}}  –  \frac{(20~\mathrm{m/s})\bigl(0.12~\mathrm{m^{3}/s}\bigr)\cot20^{\circ}}{2\pi\bigl(0.2\,\mathrm{m}\bigr)\bigl(0.05\,\mathrm{m}\bigr)\bigl(9.81\,\mathrm{m/s^{2}}\bigr)}=30.08\,\mathrm{m}

Therefore,

\dot{W}_{\mathrm{pump}}\,=\,Q\gamma h_{\mathrm{pump}}\,=\,\left(0.12\,\mathrm{m}^{3}/{\mathrm{s}}\right)\left(100\,\mathrm{kg/m^{3}}\right)\left(9.81\,\mathrm{m}/{\mathrm{s}}^{2}\right)\left(30.08\,\mathrm{m}\right)\\=35.41(10^{3})~\mathrm{W}=35.4~\mathrm{kW}

Related Answered Questions