The machine of Example 7.11 is connected to an infinite bus through a link with reactance of 0.2 p.u. The excitation voltage is 1.3 p.u. and the infinite-bus voltage is maintained at 1 p.u. For a power angle of 25 deg, compute the active and reactive power supplied to the bus.
We have
\begin{array}{l}{{X_{d}=0.95+0.2=1.15\,\mathrm{p.u.}}}\\ {{X_{q}=0.7+0.2=0.9\mathrm{p.u.}}}\end{array} \\ E_{f}=1.3\qquad\delta=25\;\mathrm{deg}\qquad V_{t}=1As a result, we use Eq. (7.69) to obtain
P=\frac{V E_{f}}{X_{d}}\sin\delta+\frac{V^{2}}{2}\left(\frac{1}{X_{q}}-\frac{1}{X_{d}}\right)\sin2\delta (7.69)
P={\frac{E_{f}V}{X_{d}}}\sin\delta+{\frac{V^{2}}{2}}\left({\frac{1}{X_{q}}}-{\frac{1}{X_{d}}}\right)\sin2\delta \\ ={\frac{1.3(1)}{1.15}}\sin25\,\mathrm{deg}+{\frac{1}{2}}\left({\frac{1}{0.9}}-{\frac{1}{1.15}}\right)\sin50\,\mathrm{deg} \\ =0.57\,{\mathrm{p.u}}.Equation (7.70) yields
Q=\frac{V E_{f}}{X_{d}}\cos\delta-V^{2}\biggl(\frac{\cos^{2}\!\delta}{X_{d}}+\frac{\sin^{2}\!\delta}{X_{q}}\biggr) (7.70)
Q=\frac{E_{f}V}{X_{d}}\cos\delta-V^{2}\biggl(\frac{\cos^{2}\delta}{X_{d}}+\frac{\sin^{2}\delta}{X_{q}}\biggr) \\ ={\frac{1.3(1)}{1.15}}\cos25\operatorname{deg}-\left({\frac{\cos^{2}25}{1.15}}+{\frac{\sin^{2}25}{0.9}}\right) \\ =0.11which are the required answers.