Question 27.10: The panel shown in Fig. P.27.10 is idealized into a combinat......

The panel shown in Fig. P.27.10 is idealized into a combination of direct stress carrying booms and shear stress carrying plates; the boom areas are shown and the plate thickness is t. Derive expressions for the distribution of a direct load in each boom and state how the load distributions are affected when A = B.

p.27.10
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The assumed directions of shear flow are shown in Fig. S.27.10(a). For the equilibrium of an element of the top boom, Fig. S.27.10(b),

P_{1}+{\frac{\partial P_{1}}{\partial z}}\delta z-P_{1}+q_{1}\delta z=0

from which

{\frac{\partial P_{1}}{\partial z}}=-q_{1}        (i)

Similarly, for an element of the central boom,

{\frac{\partial P_{2}}{\partial z}}=q_{1}-q_{2}        (ii)

For overall equilibrium of the panel, at any section z,

P_{1}+P_{2}+P_{3}=-6P          (iii)

and taking moments about boom 3,

P_{1}2d+P_{2}d+3P2d+2P d=0

so that

2P_{1}+P_{2}=-8P          (iv)

The compatibility condition is shown in Fig. S.27.10(c) for an element of the top panel.
Then

(1+\varepsilon_{2})\delta z=(1+\varepsilon_{1})\delta z+d\left({\frac{\mathrm{d}\gamma_{1}}{\mathrm{d}z}}+{\frac{\partial^{2}v}{\partial z^{2}}}\right)\delta z

i.e.,

{\frac{\mathrm{d}\gamma_{1}}{\mathrm{d}z}}={\frac{1}{d}}(\varepsilon_{2}-\varepsilon_{1})-{\frac{\partial^{2}\nu}{\partial z^{2}}}          (v)

Similarly, for an element of the lower panel,

{\frac{\mathrm{d}\gamma_{2}}{\mathrm{d}z}}={\frac{1}{d}}(\varepsilon_{3}-\varepsilon_{2})-{\frac{\partial^{2}\nu}{\partial z^{2}}}        (vi)

Subtracting Eq. (vi) from (v),

{\frac{\mathrm{d}\gamma_{1}}{\mathrm{d}z}}-{\frac{\mathrm{d}\gamma_{2}}{\mathrm{d}z}}={\frac{1}{d}}(2\varepsilon_{2}-\varepsilon_{1}-\varepsilon_{3})        (vii)

But

\gamma_{1}=\frac{q_{1}}{G t}\quad\gamma_{2}=\frac{q_{2}}{G t}\quad\varepsilon_{2}=\frac{P_{2}}{B E}\quad\varepsilon_{1}=\frac{P_{1}}{A E}\quad\varepsilon_{3}=\frac{P_{3}}{A E}

Then, from Eq. (vii),

{\frac{\mathrm{d}q_{1}}{\mathrm{d}z}}-{\frac{\mathrm{d}q_{2}}{\mathrm{d}z}}={\frac{G t}{d E}}\left({\frac{2P_{2}}{B}}-{\frac{P_{1}}{A}}-{\frac{P_{3}}{A}}\right)          (viii)

Substituting in Eq. (viii) for q_{1}-q_{2} from Eq. (ii) and for P_{1}{\mathrm{~and~}}P_{3} from Eqs (iv) and (iii) and rearranging,

{\frac{\partial^{2}P_{2}}{\partial z^{2}}}-\mu^{2}P_{2}={\frac{6G t P}{d E A}}          (ix)

where

\mu^{2}{=}\frac{G t(2A+B)}{d E A B}

The solution of Eq. (ix) is

P_{2}=C\cosh\mu z+D\sinh\mu z-{\frac{6P B}{2A+B}}\,

When z=0,P_{2}=-2P, and when z=L,\ q_{1}=q_{2}=0 so that, from Eq. (ii), \partial P_{2}/\partial z=0. These give

C=4P\left({\frac{B-A}{2A+B}}\right)\quad D=-4P\left({\frac{B-A}{2A+B}}\right)\operatorname{tanh}\mu L

Then

P_{2}={\frac{6P}{2A+B}}\left[-B+{\frac{2}{3}}(B-A){\frac{\cosh\mu(L-z)}{\cosh\mu L}}\right]

From Eq. (iv),

P_{1}={\frac{6P}{2A+B}}\left[-\left({\frac{B+8A}{6}}\right)-{\frac{1}{3}}(B-A){\frac{\cosh\mu(L-z)}{\cosh\mu L}}\right]

and from Eq. (iii),

P_{3}={\frac{6P}{2A+B}}\left[-\left({\frac{4A-B}{6}}\right)-{\frac{1}{3}}(B-A){\frac{\cosh\mu(L-z)}{\cosh\mu L}}\right]

When A=B,

P_{1}=-3P\ \ P_{2}=-2P\ \ P_{3}=-P

and there is no shear lag effect.

s.27.10.a
s.27.10.b
s.27.10.c

Related Answered Questions