The pontoon shown in Fig. S3.9 is 15 \mathrm{ft} long, 9 \mathrm{ft} wide, and 4 \mathrm{ft} high, and is built of uniform material, \gamma=45 \mathrm{lb} / \mathrm{ft}^3 . (a) How much of it is submerged when floating in water? (b) If it is tilted about its long axis by an applied couple (no net force), to an angle of 12^{\circ} , what will be the moment of the righting couple?
(a) Floating level, let d= the depth of submergence. Then
W=F_B ; \quad 15(9) 4(45)=15(9) d(62.4) ; \quad d=2.885 \mathrm{ft}
(b) At 12^{\circ} tilt, let A D be the water line (see Fig. S3.9).
Divide the buoyancy force into two components B_1 and B_2 , due to the rectangular block A E H K and the triangular prism A D E of displaced water, respectively.
D E=2 e=b \tan 12^{\circ}=9 \tan 12^{\circ}=1.913 \mathrm{ft} ; N I=e=0.957 \mathrm{ft}
As there is no net force, M N=d=2.885 \mathrm{ft} . Therefore
c=I M=M N-N I=2.885-0.957=1.928 \mathrm{ft}
B_1 is at the centroid of the block A E H K , so
\begin{aligned}& G B_1=\frac{1}{2}(h-c)=\frac{1}{2}(4-1.928)=1.036 \mathrm{ft} ; \quad a_1=G B_1 \sin 12^{\circ}=0.215 \mathrm{ft} \\& F_1=\gamma L b c=45(15) 9(1.928)=11,710 \mathrm{lb} \\&\end{aligned}
B_2 is at the centroid of the triangle A D E , so
J E=b / 3, \quad I J=b / 6=1.5 \mathrm{ft}, \quad B_2 J=\frac{2}{3} e=0.638 \mathrm{ft}
G is at the centroid of the major rectangle, so M G=h / 2=2 \mathrm{ft} ,
\begin{gathered}G I=M G-M I=M G-c=2-1.928=0.0719 \mathrm{ft} \\a_2=I J \cos 12^{\circ}+\left(B_2 J-G I\right) \sin 12^{\circ}=1.585 \mathrm{ft} \\F_2=\gamma L b e=45(15) 9(0.957)=5810 \mathrm{lb}\end{gathered}
Counterclockwise moments about G :
\begin{aligned}\text { Righting moment } & =F_2 a_2-F_1 a_1=5810(1.585)-11,710(0.215) \\& =6690 \mathrm{lb} \cdot \mathrm{ft} \end{aligned}