The rheological properties of a particular suspension may be approximated reasonably well by either a powerlaw or a Bingham-plastic model over the shear rate range of 10 to 50 s−1. If the consistency coefficient k is 10 N sn/m−2 and the flow behaviour index n is 0.2 in the power law model, what will be the approximate values of the yield stress and of the plastic viscosity in the Bingham-plastic model?
What will be the pressure drop, when the suspension is flowing under laminar conditions in a pipe 200 m long and 40 mm diameter, when the centre line velocity is 1 m/s, according to the power-law model? Calculate the centre-line velocity for this pressure drop for the Bingham-plastic model.
Using the power-law model (equation 3.121):
∣Ry∣=k(∣∣∣∣dydux∣∣∣∣)n=10(∣∣∣∣dydux∣∣∣∣)0.2When: ∣∣∣∣dydux∣∣∣∣=10 s−1:∣Ry∣=10×100.2=15.85 N/m2
∣∣∣∣dydux∣∣∣∣=50 s−1:∣Ry∣=10×500.2=21.87 N/m2Using the Bingham-plastic model (equation 3.125):
∣Ry∣−RY=μp∣∣∣∣dydux∣∣∣∣(∣Ry∣⩾RY) (3.125)
∣Ry∣=RY+μp∣∣∣∣dydux∣∣∣∣When: ∣∣∣∣dydux∣∣∣∣=10 s−1: 15.85=RY+10μp
∣∣∣∣dydux∣∣∣∣=50 s−1: 21.87=RY+50μp.
Subtracting: 6.02 = 40μp.
Thus: μp = 0.150 N s/m²
and: RY = 14.35 N/m²
Thus, the Bingham-plastic equation is:
∣Ry∣=14.35+0.150∣∣∣∣dydux∣∣∣∣For the power-law fluid:
Equation 3.131 gives: uCL=(2kl−ΔP)1/nn+1nr(n+1)/n (3.131)
Rearranging: −ΔP=2kluCLn(nn+1)nr−(n+1).
The numerical values in SI units are:
uCL=1 m/s, l=200 m, r=0.02 m, k=10 Nsnm−2, n=0.2and: -ΔP = 626,000 N/m2
For a Bingham-plastic fluid:
The centre line velocity is given by equation 3.145:
up=8μpl−ΔPr2(2−4X+2X2)where: X=rl(−ΔP)2RY
=0.02200×626,0002×14.35=0.458∴ 2 – 4X + 2X² = 0.589
up=8×0.150×200626,000×(0.02)2×0.589= 0.61 m/s