Holooly Plus Logo

Question 21.2: The rod in Fig. 21-9a has a weight per unit length of 1.5 lb......

The rod in Fig. 21-9a has a weight per unit length of 1.5 lb/ft. Determine its angular velocity just after the end A falls onto the hook at E. The hook provides a permanent connection for the rod due to the spring-lock mechanism S. Just before striking the hook the rod is falling downward with a speed (v_{G} )_{1} = 10 ft/s.

hh
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The principle of impulse and momentum will be used since impact occurs.

Impulse and Momentum Diagrams. Fig. 21-9b. During the short time Δt, the impulsive force F acting at A changes the momentum of the rod. (The impulse created by the rod’s weight W during this time is small compared to \int{} \textbf{F}  dt, so that it can be neglected, i.e., the weight is a non impulsive force.) Hence, the angular momentum of the rod is conserved about point A since the moment of \int{} \textbf{F} dt about A is zero.

Conservation of Angular Momentum. Equation 21-9 must be used to find the angular momentum of the rod, since A does not become a fixed point until after the impulsive interaction with the hook. Thus, with reference to Fig. 21-9b, (\textbf{H}_{A})_{1} = (\textbf{H}_{A})_{2} or

\textbf{H}_{A} = ρ_{G/A} ×  m\textbf{v}_{G}+ \textbf{H}_{G}             (21-9)

r_{G/A} × m (\textbf{v}_{G} )_{1} = r_{G/A} × m(\textbf{v}_{G} )_{2}   +  (\textbf{H}_{G})_{2}        (1)

From Fig. 21-9a, r_{G/A} = {-0.667i   +   0.5j} ft. Furthermore, the primed axes are principal axes of inertia for the rod because I_{x'y'} = I_{x'z'} = I_{z'y'} = 0. Hence, from Eqs. 21-11, (H_{G})_{2} = I_{x'}\textbf{ω}_{x}\textbf{i} +   I_{y'}\textbf{ω}_{y}\textbf{j}+ I_{z'}\textbf{ω}_{z}\textbf{k}. The principal moments of inertia are I_{x'} = 0.0272  slug· ft², I_{y'} = 0.0155  slug· ft², I_{z'} = 0.0427  slug· ft² (see Prob. 21-13). Substituting into Eq. 1, we have

H_{x} = I_{x}\textbf{ω}_{x}          H_{y} = I_{y} \textbf{ω}_{y}           H_{z} = I_{z} \textbf{ω}_{z}               (21-11)

(-0.667\textbf{i}+   0.5\textbf{j})  ×  [(\frac{4.5}{32.2} ) (-10\textbf{k})] = (-0.667\textbf{i} + 0.5\textbf{j}) × [(\frac{4.5}{32.2} ) (-  \textbf{v}_{G} )_{2} \textbf{k}]

+ 0.0272\textbf{ω}_{x}\textbf{i} +   0.0155\textbf{ω}_{y}\textbf{j} +  0.0427\textbf{ω}_{z}\textbf{k}

Expanding and equating the respective i, j, k components yields

–  0.699 = –  0.0699 (\textbf{v}_{G} )_{2}  + 0.0272\textbf{ω}_{x}                  (2)

– 0.932 = – 0.0932(\textbf{v}_{G} )_{2}  +   0.0155\textbf{ω}_{y}                     (3)

o = 0.0427\textbf{ω}_{z}                                                                        (4)

Kinematics. There are four unknowns in the above equations; however, another equation may be obtained by relating w to (\textbf{v}_{G} )_{2} using kinematics. Since \textbf{ω}_{z} = 0 (Eq. 4) and after impact the rod rotates about the fixed point A, Eq. 20-3 can be applied, in which case (\textbf{v}_{G} )_{2} = w × r_{G/A},or

– (\textbf{v}_{G} )_{2} \textbf{k}= (\textbf{ω}_{x}\textbf{i} +  \textbf{ω}_{y}\textbf{j})  ×   (- 0.667\textbf{i} +   0.5\textbf{j})

– (\textbf{v}_{G} )_{2} = 0.5\textbf{ω}_{x} +   0.667\textbf{ω}_{y}                   (5)

Solving Eqs. 2, 3 and 5 simultaneously yields

(\textbf{v}_{G} )_{2} = {-8.41k} ft/s                ω = {-4.09i   –   9.55j} rad/s

21.9

Related Answered Questions