Question 25.7: The standard voltage of the cell Zn(s)|ZnSO4(aq)||CuSO4(aq)|......

The standard voltage of the cell

Zn(s)|ZnSO_{4}(aq)||CuSO_{4}(aq)|Cu(s)

at 25.0°C is E^{\circ}_{cell} = 1.10\ V. Given that E^{\circ}_{red} = -0.76\ V for the electrode half reaction described by

Zn^{2+}(aq, 1\ M) + 2\ e^− → Zn(s)

calculate E^{\circ}_{red} at 25.0°C for the electrode half reaction given by

Cu^{2+}(aq, 1\ M) + 2\ e^− → Cu(s)
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The oxidation takes place at the left-hand electrode, so the half reaction equations are

Zn(s) → Zn^{2+}(aq) + 2\ e^−              (oxidation)

Cu^{2+}(aq) + 2\ e^− → Cu(s)              (reduction)

Because

E^{\circ}_{ox}[Zn|Zn^{2+}] = –E^{\circ}_{red}[Zn|Zn^{2+}] = +0.76\ V

we have

E^{\circ}_{cell} = E^{\circ}_{red}[Cu^{2+}|Cu] + E^{\circ}_{ox}[Zn|Zn^{2+}] = E^{\circ}_{red}[Cu^{2+}|Cu] + 0.76\ V = 1.10\ V

and so

E^{\circ}_{red}[Cu^{2+}|Cu] = 1.10\ V – 0.76\ V = +0.34\ V

Thus, the standard reduction voltage of the Cu^{2+}(aq)|Cu(s) electrode is E^{\circ}_{red} = +0.34\ V at 25.0°C, in agreement with the value listed in Table 25.3. Therefore, the standard reduction voltage of an electrode can be obtained from the standard cell voltage of a cell for which the standard reduction voltage of the other electrode is known.

TABLE 25.3 Standard reduction voltages at 25.0°C for aqueous solutions (see also Aِِppendix G)*
Electrode half reaction E^{\circ}_{red}/V
 

 

 

 

\uparrow
increasing strength
of oxidizing agents

Acidic solutions  

 

 

 

increasing strength
of reducing agents
\downarrow

F_{2}(g) + 2\ e^− → 2\ F^−(aq) +2.866
O_{3}(g) + 2\ H^+(aq) + 2\ e^− → O_{2}(g) + H_2O(l ) +2.076
Co^{3+}(aq) + e^− → Co^{2+}(aq) +1.92
Cl_{2}(g) + 2\ e^− → 2\ Cl^−(aq) +1.358
O_{2}(g) + 4\ H^+(aq) + 4\ e^− → 2\ H_2O(l ) +1.229
Pt^{2+}(aq) + 2\ e^– → Pt(s) +1.18
NO_{3}^{–}(aq) + 4\ H^+(aq) + 3\ e^– → NO(g) + 2\ H_2O(l ) +0.957
Ag^+(aq) + e^− → Ag(s) +0.7996
Cu^+(aq) + e^− → Cu(s) +0.521
Cu^{+2}(aq) +2\ e^− → Cu(s) +0.342
Hg_2Cl_2(s) + 2\ e^− → 2\ Hg(l ) + 2\ Cl^−(aq) +0.268
AgCl(s) + e^− → Ag(s) + Cl^−(aq) +0.2223
Cu^{2+}(aq) + e^− → Cu^+(aq) +0.153
2\ H^+(aq) + 2\ e^− → H_2(g) +0.0
Pb^{2+}(aq) + 2\ e^− → Pb(s) -0.126
V^{3+}(aq) + e^− → V^{2+}(aq) -0.255
Fe^{2+}(aq) + 2\ e^– → Fe(s) –0.447
Zn^{2+}(aq) + 2\ e^− → Zn(s) -0.762
Mn^{2+}(aq) + 2\ e^– → Mn(s) –1.185
Al^{3+}(aq) + 3\ e^− → Al(s) -1.662
H_2(g) + 2\ e^− → 2\ H^−(aq) -2.23
Mg^{2+}(aq) + 2\ e^− → Mg(s) -2.372
Na^+(aq) + e^− → Na(s) -2.71
Ca^{2+}(aq) + 2\ e^– → Ca(s) –2.868
K^+(aq) + e^– → K(s) –2.931
Li^+(aq) + e^− → Li(s) -3.0401
Basic solutions
O_2(g) + 2\ H_2O(l ) + 4\ e^− → 4\ OH^−(aq) +0.401
Cu(OH)_2(s) + 2\ e^− → Cu(s) + 2\ OH^−(aq) -0.222
Fe(OH)_3(s) + e^– → Fe(OH)_2(s) + OH^–(aq) –0.56
2\ H_2O(l ) + 2\ e^− → H_2(g) + 2\ OH^−(aq) -0.8277
2\ SO_{3}^{2−}(aq) + 2\ H_2O(l) + 2\ e^− → S_{2}O_{4}^{2−}(aq) + 4\ OH^−(aq) -1.12
*Data from CRC Handbook of Chemistry and Physics, 87th ed., ed. David R. Lide, CRC Press, 2006–2007

Related Answered Questions