The velocity component in a two-dimensional flow field for an incompressible fluid is expressed as u=\frac{y^3}{3}+2 x-x^2 y, v=x y^2-2 y-\frac{x^3}{3} . Check whether the velocity potential exists or not? If exists obtain an expression for velocity potential \phi
Given data:
Velocity components u=\frac{y^3}{3}+2 x-x^2 y, \text { and } v=x y^2-2 y-\frac{x^3}{3}
Hence, \frac{\partial u}{\partial y}=y^2-x^2 \text {, and }
\frac{\partial v}{\partial x}=y^2-x^2
For a two-dimensional, incompressible flow the condition of irrotationality is
\omega_z=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=0
Substituting the values of \frac{\partial u}{\partial x} \text { and } \frac{\partial v}{\partial y} in the expression of w_z , we get
\omega_z=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=\frac{1}{2}\left(y^2-x^2-y^2+x^2\right)=0
Hence, the flow is irrotational and the velocity potential exists.
From the definition of velocity potential, we have
u=\frac{\partial \phi}{\partial x}
v=\frac{\partial \phi}{\partial y}
Thus, u=\frac{\partial \phi}{\partial x}=\frac{y^3}{3}+2 x-x^2 y
or \phi=\frac{x y^3}{3}+x^2-\frac{x^3 y}{3}+f_1(y)+C_3 (5.69)
And v=\frac{\partial \phi}{\partial y}=x y^2-2 y-\frac{x^3}{3}
or \phi=\frac{x y^3}{3}-y^2-\frac{x^3 y}{3}+f_2(x)+C_4 (5.70)
Comparing Eqs. (5.69) and (5.70), we have
f_1(y)=-y^2, f_2(x)=x^2
Hence, the velocity potential for the flow is
\phi=\frac{x y^3}{3}+x^2-y^2-\frac{x^3 y}{3}+C
where C is a constant.