The velocity components are given as follows:
u = (2x + y + z)t; v= (x — 2y + z)t; w = (x + y)t
Show that they satisfy continuity equation in 3-D.
Continuity equation in 3-D is given by Eq. (4.6) as:
\frac{\pmb{\delta}u }{\pmb{\delta} x}+\frac{\pmb{\delta} v}{\pmb{\delta} y}+\frac{\pmb{\delta} w}{\pmb{\delta} z}=0 (i)
Now,
\frac{\pmb{\delta}u }{\pmb{\delta} x}=2t,\frac{\pmb{\delta} v}{\pmb{\delta} y}=-2t, and \frac{\pmb{\delta} w}{\pmb{\delta} z}=0
Substituting these values in Eq. (i), we get
\frac{\pmb{\delta}u }{\pmb{\delta} x}+\frac{\pmb{\delta} v}{\pmb{\delta} y}+\frac{\pmb{\delta} w}{\pmb{\delta} z}=2t-2t+0=0
Hence the three components satisfy the continuity equation.