Question 26.18: The Z-section beam shown in Fig. P.26.18 carries a bending m......

The Z-section beam shown in Fig. P.26.18 carries a bending moment of 0.2 kNm about its X axis. If, for the flanges E_{x}=54,100 N/mm² and for the web Ex=17,700 N/mm², calculate the maximum load intensity in the section.

p.26.18
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The modified second moments of area are, from Eqs (26.67),

I_{X X}^{\prime}=\int_{A}E_{Z,i}Y^{2}\;\mathrm{d}A,\quad I_{Y Y}^{\prime}=\int_{A}E_{Z,i}X^{2}\;\mathrm{d}A,\quad I_{X Y}^{\prime}=\int_{A}E_{Z,i}X Y\;\mathrm{d}A.            (26.67)

I_{X X}^{\prime}=2\times54100\times50\times1\times50^{2}+17700\times0.5\times100^{3}/12=1.43\times10^{10}  \mathrm{Nmm^{2}}

 

\begin{array}{l c r}{{I_{Y Y}^{\prime}=54100\times1\times100^{3}/12=0.45\times10^{10}{\mathrm{Nmm}}^{2}}}\\ {{I_{X Y}^{\prime}=54100\times50\times1(-25)(50)+54100\times50\times1(25)(-50)=-0.68\times10^{10}  {\mathrm{Nmm}}^{2}}}\end{array}

In this case M_{Y}=0 so that Eq. (26.68) reduces to

\sigma_{Z}=E_{Z,i}\left[\left({\frac{M_{Y}I_{X X}^{\prime}-M_{X}I_{X Y}^{\prime}}{I_{X X}^{\prime}I_{Y Y}^{\prime}-I_{X Y}^{2}}}\right)X+\left({\frac{M_{X}I_{Y Y}^{\prime}-M_{Y}I_{X Y}^{\prime}}{I_{X X}^{\prime}I_{Y Y}^{\prime}-I_{~X Y}^{2}}}\right)Y\right]              (26.68)

\sigma_{Z}=E_{Z,i}\left(\frac{-M_{X}I_{Y Y}^{\prime}X}{I_{X X}^{\prime}I_{Y Y}^{\prime}-(I_{X X}^{\prime})^{2}}+\frac{M_{X}I_{Y Y}^{\prime}Y}{I_{X X}^{\prime}I_{Y Y}^{\prime}-(I_{X Y}^{\prime})^{2}}\right)

Substituting the values of M_{X}\,(=\,0.2\,\mathrm{kNm}),\,I_{X X}^{\prime}\;\mathrm{etc.} gives

\sigma_{Z}=E_{Z,1}(0.75X+0.5Y)\times10^{-4}

Then, at 1, \sigma_{Z,1}=541000\,[0.75(-50)+0.5\,(50)]\times\;10^{-4}=67.6\;\mathrm{N/mm^{2}} At 2 (in the flange),

\sigma_{Z,2}=54100[0.75(0)+0.5(50)]\times10^{-4}=135.3\,\mathrm{N/mm^{2}}

At 2 (in the web),

\sigma_{Z,2}=17700[0.75(0)+0.5(50)]\times10^{-4}=44.3\,\mathrm{N/mm^{2}}

At 3 (in the web),

\sigma_{Z.3}=17700[0.75(0)+0.5(-50)]\times10^{-4}=-44.3\,\mathrm{N/mm^{2}}

At 3 (in the flange),

\sigma_{Z,3}=54100[0.75(0)+0.5(-50)]\times10^{-4}=-135.3\,\mathrm{N/mm^{2}}

At 4,

\sigma_{Z,4}=54100[0.75(0)+0.5(-50)]\times10^{-4}=67.6\,\mathrm{N/mm^{2}}

The maximum force intensity is therefore

N({\mathrm{max}}\,)=\pm1\times135.3=135.3\,\mathrm{N/mm}

occurring at points 2 and 3 in the flanges.

Related Answered Questions