This example illustrates the solution by transforming the coefficient matrix to an upper triangular form (backward substitution). The equations
\left|\begin{matrix}1 &4& 6 \\ 2& 6 &3 \\ 5& 3& 1\end{matrix} \right| \left|\begin{matrix}x_{1} \\ x_{2} \\ x_{3}\end{matrix} \right| = \left|\begin{matrix}2 \\ 1 \\ 5\end{matrix} \right|
can be solved by row manipulations on the augmented matrix as follows:
\left|\begin{matrix}1 &4& 6 \\ 2& 6 &3 \\ 5& 3& 1\end{matrix} \right|\left|\begin{matrix}2 \\ 1 \\ 5\end{matrix} \right|→ R_{2} \ – \ 2R_{1} = \left|\begin{matrix}1 &4& 6 \\ 0& -2 &-9 \\ 5& 3& 1\end{matrix} \right|\left|\begin{matrix}2 \\ -3 \\ 5\end{matrix} \right|→ R_{3} \ – \ 5R_{1}= \left|\begin{matrix}1 &4& 6 \\ 0& -2 &-9 \\ 0& -17& -29\end{matrix} \right|\left|\begin{matrix}2 \\ -3 \\ -5\end{matrix} \right|→ R_{3} \ – \frac{17}{2}R_{2}=\left|\begin{matrix}1 &4& 6 \\ 0& -2 &-9 \\ 0& 0&47.5 \end{matrix} \right|\left|\begin{matrix}2 \\ -3 \\ 20.5 \end{matrix} \right|
Thus,
47.5x_{3} = 20.5
-2x_{2} – 9x_{3} = -3
x_{1} + 4x_{2} + 6x_{3} = 2
which gives
\overline{x}= \left|\begin{matrix}1.179 \\ -0.442 \\ 0.432 \end{matrix} \right|A set of simultaneous equations can also be solved by partitioning
\left| \begin{array}{c : c} a_{11}, . . . ,a_{1k} &a_{1m}, . . . ,a_{1n} \\ . . . & . . . \\ a_{k1}, . . . ,a_{kk}&a_{km}, . . . ,a_{kn} \\ \hdashline a_{m1}, . . . ,a_{mk} &a_{mm}, . . . ,a_{mn} \\ . . . & . . . \\ a_{n1}, . . . ,a_{nk}&a_{nm}, . . . ,a_{nn} \end{array} \right|\left| \begin{array}{c} x_{1} \\ . \\ x_{k} \\ \hdashline x_{m} \\ . \\ x_{n} \end{array} \right|= \left| \begin{array}{c} b_{1} \\ . \\ b_{k} \\ \hdashline b_{m} \\ . \\ b_{n} \end{array} \right| (A.68)
Equation A.68 is horizontally partitioned and rewritten as
\left|\begin{matrix} \overline{A}_{1}&\overline{A}_{2} \\ \overline{A}_{3}&\overline{A}_{4} \end{matrix} \right| = \left|\begin{matrix} \overline{X}_{1} \\ \overline{X}_{2} \end{matrix} \right|\left|\begin{matrix} \overline{B}_{1} \\ \overline{B}_{2} \end{matrix} \right| (A.69)
Vectors \overline{X}_{1} and \overline{X}_{2} are given by
\overline{X}_{1}=⌊\overline{A}_{1}-\overline{A}_{2}\overline{A}^{-1}_{4}\overline{A}_{3}⌋^{-1} ⌊\overline{B}_{1}-\overline{A}_{2}\overline{A}^{-1}_{4}\overline{B}_{2}⌋ (A.70)
\overline{X}_{2}=⌊\overline{A}^{-1}_{4}(\overline{B}_{2}-\overline{A}_{3}\overline{X}_{1})⌋ (A.71)