Question A.9: This example illustrates the solution by transforming the co......

This example illustrates the solution by transforming the coefficient matrix to an upper triangular form (backward substitution). The equations
\left|\begin{matrix}1 &4& 6 \\ 2& 6 &3 \\ 5& 3& 1\end{matrix} \right| \left|\begin{matrix}x_{1} \\ x_{2} \\ x_{3}\end{matrix} \right| = \left|\begin{matrix}2 \\ 1 \\ 5\end{matrix} \right|

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

can be solved by row manipulations on the augmented matrix as follows:

\left|\begin{matrix}1 &4& 6 \\ 2& 6 &3 \\ 5& 3& 1\end{matrix} \right|\left|\begin{matrix}2 \\ 1 \\ 5\end{matrix} \right|→ R_{2} \ – \ 2R_{1} = \left|\begin{matrix}1 &4& 6 \\ 0& -2 &-9 \\ 5& 3& 1\end{matrix} \right|\left|\begin{matrix}2 \\ -3 \\ 5\end{matrix} \right|→ R_{3} \ – \ 5R_{1}

= \left|\begin{matrix}1 &4& 6 \\ 0& -2 &-9 \\ 0& -17& -29\end{matrix} \right|\left|\begin{matrix}2 \\ -3 \\ -5\end{matrix} \right|→ R_{3} \ – \frac{17}{2}R_{2}=\left|\begin{matrix}1 &4& 6 \\ 0& -2 &-9 \\ 0& 0&47.5 \end{matrix} \right|\left|\begin{matrix}2 \\ -3 \\ 20.5 \end{matrix} \right|

Thus,

47.5x_{3} = 20.5
-2x_{2} – 9x_{3} = -3
x_{1} + 4x_{2} + 6x_{3} = 2

which gives

\overline{x}= \left|\begin{matrix}1.179 \\ -0.442 \\ 0.432 \end{matrix} \right|

A set of simultaneous equations can also be solved by partitioning

\left| \begin{array}{c : c} a_{11}, . . . ,a_{1k} &a_{1m}, . . . ,a_{1n} \\ . . . & . . . \\ a_{k1}, . . . ,a_{kk}&a_{km}, . . . ,a_{kn} \\ \hdashline a_{m1}, . . . ,a_{mk} &a_{mm}, . . . ,a_{mn} \\ . . . & . . . \\ a_{n1}, . . . ,a_{nk}&a_{nm}, . . . ,a_{nn} \end{array} \right|\left| \begin{array}{c} x_{1} \\ . \\ x_{k} \\ \hdashline x_{m} \\ . \\ x_{n} \end{array} \right|= \left| \begin{array}{c} b_{1} \\ . \\ b_{k} \\ \hdashline b_{m} \\ . \\ b_{n} \end{array} \right|      (A.68)

Equation A.68 is horizontally partitioned and rewritten as

\left|\begin{matrix} \overline{A}_{1}&\overline{A}_{2} \\  \overline{A}_{3}&\overline{A}_{4}  \end{matrix} \right| = \left|\begin{matrix} \overline{X}_{1} \\ \overline{X}_{2}  \end{matrix} \right|\left|\begin{matrix} \overline{B}_{1} \\ \overline{B}_{2}  \end{matrix} \right|       (A.69)

Vectors \overline{X}_{1}  and \overline{X}_{2}  are given by

\overline{X}_{1}=⌊\overline{A}_{1}-\overline{A}_{2}\overline{A}^{-1}_{4}\overline{A}_{3}⌋^{-1} ⌊\overline{B}_{1}-\overline{A}_{2}\overline{A}^{-1}_{4}\overline{B}_{2}⌋       (A.70)
\overline{X}_{2}=⌊\overline{A}^{-1}_{4}(\overline{B}_{2}-\overline{A}_{3}\overline{X}_{1})⌋       (A.71)

Related Answered Questions

Question: A.2

Verified Answer:

The characteristic equation is given by \le...
Question: A.3

Verified Answer:

Its characteristics equation is \left|\beg...
Question: A.10

Verified Answer:

From Equations A.75 and A.76, l_{ij}=a_{ij...
Question: A.7

Verified Answer:

\overline{A}_{1} = \left|\begin{matrix}2 &a...
Question: A.5

Verified Answer:

Attach a unit matrix of 2 × 2 and perform the oper...
Question: A.1

Verified Answer:

This matrix can be reduced to an upper triangular ...