Question 6.SQ.4: Three reservoirs are connected as in Fig. 6.8. Details of th......

Three reservoirs are connected as in Fig. 6.8. Details of the three pipelines are shown below. The elevation of the water surface in the reservoirs A, C and D is constant at respectively 250 mOD, 220 mOD and 190 mOD. The pipelines are long so it can be assumed that friction losses will dominate and that minor losses can be ignored. Assuming that the flow is not controlled by means of valves, calculate the discharge through each of the pipes.

\begin{array}{cccc}\text { pipeline } & \text { length } \mathrm{~(km)} & \text { diameter } \mathrm{~(m)} & \lambda \\1 & 17.5 & 1.2 & 0.05 \\2 & 5.3 & 0.9 & 0.04 \\3 & 6.4 & 0.9 & 0.04\end{array}
Figure 6.8
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Apply Bernoulli from A to C:

Z_{AC} = {\lambda _{1}L_{1}V_{1}^{2}}/{2gD_{1}} + {\lambda _{2}L_{2}V_{2}^{2}}/{2gD_{2}}.  Z_{AC} = 250 – 220 = 30 m.

30 = \left[0.05 \times 17500 \times {V_{1}^{2}}/{19.62} \times 1.2\right] + \left[0.04 \times 5300 \times {V_{2}^{2}}/{19.62} \times 0.9\right]

30 = 37.164V_{1}^{2} + 12.006V_{2}^{2} which gives: V_{2} = \left(2.499  –  3.095V_{1}^{2}\right)^{{1}/{2}}  (1)
Apply Bernoulli from A to D:

Z_{AD} = {\lambda _{1}L_{1}V_{1}^{2}}/{2gD_{1}} + {\lambda _{3}L_{3}V_{3}^{2}}/{2gD_{3}}.  Z_{AD} = 250 – 190 = 60 m.

60 = 37.164V_{1}^{2} + \left[0.04 \times 6400 \times {V_{3}^{2}}/{19.62} \times 0.9\right]  thus  60 = 37.164V_{1}^{2} + 14.498V_{3}^{2}. This gives: V_{3} = \left(4.139  –  2.563V_{1}^{2}\right)^{{1}/{2}}  (2)

Apply the continuity equation: Q_{1} = Q_{2} + Q_{3}  so  D_{1}^{2}V_{1} = D_{2}^{2}V_{2} + D_{3}^{2}V_{3}.

Thus 1.2^{2}V_{1} = 0.9^{2}V_{2} + 0.9^{2}V_{3}  and  hence  1.440V_{1} = 0.810V_{2} + 0.810V_{3}.

Thus: V_{1} = 0.563V_{2} + 0.563V_{3}   (3)

Substituting for V_{2}  and  V_{3} in equation (3) from equations (1) and (2):

V_{1} = 0.563\left(2.499 – 3.095V_{1}^{2}\right)^{{1}/{2}} + 0.563\left(4.139 – 2.563V_{1}^{2}\right)^{{1}/{2}}   (4)

For a real solution 3.095V_{1}^{2} \lt 2.499  and  2.563V_{1}^{2} \lt 4.193  giving  V_{1} \lt 0.9  {m}/{s}  and  1.3  {m}/{s}.

Solving equation (4) by trial and error gives V_{1} = 0.895 m / s. Substituting in equation (1) gives V_{2} = 0.141  {m}/{s}  and  V_{3} = 1.444  {m}/{s} from equation (2). Thus  Q_{1} = (\pi \times {1.2^{2}}/{4}) \times 0.895 = 1.012  {m^{3}}/{s}.  Q_{2} = (\pi \times {0.9^{2}}/{4}) \times 0.141 = 0.090  {m^{3}}/{s}.

Q_{3} = (\pi \times {0.9^{2}}/{4}) \times 1.444 = 0.919  {m^{3}}/{s}.

Related Answered Questions

Question: 6.13

Verified Answer:

V = ({0.397}/{n}) D^{{2}/{3}} S_{F}^{{1}/{2...