Question 12.CSGP.67: To approximate an actual spark-ignition engine consider an a......

To approximate an actual spark-ignition engine consider an air-standard Otto cycle that has a heat addition of 1800 kJ/kg of air, a compression ratio of 7, and a pressure and temperature at the beginning of the compression process of 90 kPa, 10°C. Assuming constant specific heat, with the value from Table A.5, determine the maximum pressure and temperature of the cycle, the thermal efficiency of the cycle and the mean effective pressure.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Compression: Reversible and adiabatic so constant s from Eq.8.33-34

\begin{aligned}& P _2= P _1\left( v _1 / v _2\right)^{ k }=90(7)^{1.4}=1372 \,kPa \\& T _2= T _1\left( v _1 / v _2\right)^{ k -1}=283.2 \times(7)^{0.4}=616.6 \,K\end{aligned}

Combustion: constant volume

\begin{aligned}& T _3= T _2+ q _{ H } / C _{ V 0}=616.6+1800 / 0.717= 3 1 2 7 \,K \\& P _3= P _2 T _3 / T _2=1372 \times 3127 / 616.6= 6 9 5 8 \,k P a\end{aligned}

Efficiency and net work

\begin{aligned}& \eta_{ TH }=1- T _1 / T _2=1-283.2 / 616.5= 0 . 5 4 1 \\& w _{\text {net }}=\eta_{ TH } \times q _{ H }=0.541 \times 1800=973.8 \,kJ / kg\end{aligned}

Displacement and P_{\text {meff }}

\begin{aligned}& v _1= RT _1 / P _1=(0.287 \times 283.2) / 90=0.9029 \,m ^3 / kg \\& v _2=(1 / 7) v _1=0.1290 \,m ^3 / kg \\& P _{\text {meff }}=\frac{ w _{ NET }}{ v _1- v _2}=\frac{973.8}{0.9029-0.129}= 1 2 5 8 \,k P a\end{aligned}

34

Related Answered Questions