Transform of a Piecewise-Continuous Function
Evaluate \mathscr{L}\{f(t)\} for f(t) \quad\left\{\begin{array}{lr}0, & 0 \leq t<3 \\ 2, & t \geq 3 .\end{array}\right.
This piecewise-continuous function appears in FIGURE 4.1.5. Since f is defined in two pieces, \mathscr{L}\{f(t)\} is expressed as the sum of two integrals:
\begin{aligned} \mathscr{L}\{f(t)\} \quad \int_{0}^{\infty} e^{-s t} f(t) d t & \int_{0}^{3} e^{-s t}(0) d t+\int_{3}^{\infty} e^{-s t}(2) d t \\ = & -\left.\frac{2 e^{-s t}}{s}\right|_{3} ^{\infty} \\ & \frac{2 e^{-3 s}}{s}, \quad s>0 . \end{aligned}