Question 15.2.2: Two moles of an ideal gas (Cp=7/2 R) is allowed to expand ad......

Two moles of an ideal gas (C_p=7/2  R) is allowed to expand adiabatically and reversibly at 27 °C from a pressure of 10 atm to a pressure of 1 atm. Calculate the final temperature of the gas and the amount of work done by the gas.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.
\begin{array}{l}\text { Since } \mathrm{C}_{\mathrm{P}}=\frac{7}{2} \mathrm{R} \\  \\\mathrm{C}_{\mathrm{V}}=\mathrm{C}_{\mathrm{P}}-\mathrm{R}=\frac{7}{2} \mathrm{R}-\mathrm{R}=\frac{5}{2} \mathrm{R}\\  \\\therefore \gamma=\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=\frac{\frac{7}{2} \mathrm{R}}{\frac{5}{2} \mathrm{R}}=\frac{7}{5}=1.4\end{array}

For an adiabatic expansion of an ideal gas

\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\gamma}=\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\gamma-1}

Here \mathrm{P}_{1}=10 \mathrm{~atm} ; \quad \mathrm{P}_{2}=1 \mathrm{~atm} ;\quad \mathrm{T}_{1}=273+27=300 \mathrm{~K} \quad \gamma=1.4

\begin{array}{c}\therefore\left(\frac{\mathrm{T}_{2}}{300}\right)^{1.4}=\left(\frac{1}{10}\right)^{1.4-1} \\  \\ \begin{aligned} \text { or } \mathrm{T}_{2}&=300 \times\left(\frac{1}{10}\right)^{\frac{0.4}{1.4}}=155.38 \mathrm{~K} \\&=155.3-273=-117.61  ^{\circ} \mathrm{C}\end{aligned}\end{array}

Therefore, final temperature of the gas T_2= –117.61  °C.

The work done by the gas in a reversible adiabatic expansion is given by

\begin{array}{l}\mathrm{w}=\mathrm{nC}_{\mathrm{v}} \mathrm{T}_{1}\left(\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right) \\  \\\mathrm{n}=2, \quad \mathrm{C}_{\mathrm{v}}=\frac{5}{2} \mathrm{R}, \mathrm{T}_{1}=300 \mathrm{~K} \quad \gamma=1.4 \quad \mathrm{P}_{2}=1 \mathrm{~atm} \quad \mathrm{P}_{1}=10 \mathrm{~atm} \\  \\\mathrm{w}=2 \times \frac{5}{2} \times 1.987 \times 300\left(\left(\frac{1}{10}\right)^{\frac{1.4-1}{1.4}}-1\right)=-1436.79 \mathrm{~cal}\end{array}

Negative sign indicates the work expansion.

Related Answered Questions

Question: 15.8.1

Verified Answer:

\Delta \mathrm{G}=2.303 \mathrm{~nRTlog} \f...