Two moles of an ideal gas (C_p=7/2 R) is allowed to expand adiabatically and reversibly at 27 °C from a pressure of 10 atm to a pressure of 1 atm. Calculate the final temperature of the gas and the amount of work done by the gas.
For an adiabatic expansion of an ideal gas
\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\gamma}=\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\gamma-1}Here \mathrm{P}_{1}=10 \mathrm{~atm} ; \quad \mathrm{P}_{2}=1 \mathrm{~atm} ;\quad \mathrm{T}_{1}=273+27=300 \mathrm{~K} \quad \gamma=1.4
\begin{array}{c}\therefore\left(\frac{\mathrm{T}_{2}}{300}\right)^{1.4}=\left(\frac{1}{10}\right)^{1.4-1} \\ \\ \begin{aligned} \text { or } \mathrm{T}_{2}&=300 \times\left(\frac{1}{10}\right)^{\frac{0.4}{1.4}}=155.38 \mathrm{~K} \\&=155.3-273=-117.61 ^{\circ} \mathrm{C}\end{aligned}\end{array}Therefore, final temperature of the gas T_2= –117.61 °C.
The work done by the gas in a reversible adiabatic expansion is given by
\begin{array}{l}\mathrm{w}=\mathrm{nC}_{\mathrm{v}} \mathrm{T}_{1}\left(\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right) \\ \\\mathrm{n}=2, \quad \mathrm{C}_{\mathrm{v}}=\frac{5}{2} \mathrm{R}, \mathrm{T}_{1}=300 \mathrm{~K} \quad \gamma=1.4 \quad \mathrm{P}_{2}=1 \mathrm{~atm} \quad \mathrm{P}_{1}=10 \mathrm{~atm} \\ \\\mathrm{w}=2 \times \frac{5}{2} \times 1.987 \times 300\left(\left(\frac{1}{10}\right)^{\frac{1.4-1}{1.4}}-1\right)=-1436.79 \mathrm{~cal}\end{array}Negative sign indicates the work expansion.