Question 2.49: Use nodal analysis to determine the current flowing through ......

Use nodal analysis to determine the current flowing through the various branches in the circuit shown in Fig. 2.158. All resistances shown are in Ohms.

a5a8ba80-e8b8-4489-97f9-3362e2fae416
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We have shown the current directions in the various branches of the circuit and will apply KCL of node B, node C, and node D, respectively. Let V_B,\ V_C,\ V_D be the voltages at these nodes.
We have

\begin{aligned} I_1 & =I_2+I_3 \\ 1 & =\frac{V_B}{10}+\frac{V_B-V_C}{10} \end{aligned}

or,                       2 \mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{c}}-10=0               (i)

Then

\mathrm{I}_3=\mathrm{I}_4+\mathrm{I}_5 \text { at node } \mathrm{C}

Putting values

\frac{V_B-V_C}{10}=\frac{V_C-12}{20}+\frac{V_C-V_D}{20}

or,                                 2 V_B-4 V_C+V_D+12=0              (ii)

Again

\begin{gathered} \mathrm{I}_5+\mathrm{I}_7=\mathrm{I}_6 \\ \frac{\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{D}}}{20}+0.5=\frac{\mathrm{V}_{\mathrm{D}}}{20} \end{gathered}

or,                                V_C-V_D+10=V_D

or,                            \mathrm{V}_{\mathrm{c}}-2 \mathrm{~V}_{\mathrm{D}}+10=0            (iii)

Solving Eqs. (i), (ii) and (iii), we get

\begin{aligned} & \mathrm{V}_{\mathrm{B}}=10.4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{C}}=10.8 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{D}}=10.4 \mathrm{~V} \\ & \mathrm{I}_2=\frac{\mathrm{V}_{\mathrm{B}}}{10}=\frac{10.4}{10}=1.04 \mathrm{~A} \\ & \mathrm{I}_3=\frac{\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{C}}}{10}=\frac{10.4-10.8}{10}=-\frac{0.4}{10}=-0.04 \mathrm{~A} \end{aligned}

(direction of I_2 is opposite to that shown)

\begin{aligned} & I_5=\frac{V_C-V_D}{20}=\frac{10.8-10.4}{20}=\frac{0.4}{20}=0.02 \mathrm{~A} \\ & I_6=\frac{V_D}{20}=\frac{10.4}{20}=0.52 \mathrm{~A} \end{aligned}

Again                        \mathrm{I}_6=\mathrm{I}_7+\mathrm{I}_5=0.5+0.02=0.52 \mathrm{~A}

again       \mathrm{I}_2=\mathrm{I}_1+\mathrm{I}_3=1.0+0.04=1.04 A

\begin{aligned} & \mathrm{I}_4+\mathrm{I}_5=\mathrm{I}_3 \\ & \begin{aligned} \mathrm{I}_4 & =\mathrm{I}_3-\mathrm{I}_5 \\ & =0.04-0.02 \\ & =0.02 \mathrm{~A} \end{aligned} \end{aligned}
1689f59e-b510-4624-b38c-1cb74fdc4355

Related Answered Questions

Question: 2.50

Verified Answer:

Applying KCL, we can write 8=I_1+I_2[/latex...
Question: 2.46

Verified Answer:

We convert the delta forming resistances between t...
Question: 2.45

Verified Answer:

Let us change the resistances forming a delta acro...