Question 13.4: Use Table 13.1 and the properties of a linear operator to in......

Use Table 13.1 and the properties of a linear operator to integrate the following  expressions:

(a) x² + 9

(b)3t^{4}-{\sqrt{t}}

(c) \frac{1}{x}

(d) (t + 2)²

(e){\frac{1}{z}}+z

(f)4\mathrm{e}^{2z}

(g) 3 sin 4t

(h) 4 cos(9x + 2)

(i)3\mathrm{e}^{2z}

(j)\frac{\sin x+\cos x}{2}

(k) 2t − e^t

(l)\tan\left({\frac{z-1}{2}}\right)

(m)\mathrm{e}^{t}+\mathrm{e}^{-t}

(n) 3 sec(4x − 1)

(o) 2 cot 9x

(p) 7 cosec(π/3)

Table 13.1
The integrals of some common functions.
f(x) \int f(x) d x f(x) \int f(x) \mathrm{d} x
k, constant kx + c \cos (a x+b) \frac{\sin (a x+b)}{a}+c
x^n \frac{x^{n+1}}{n+1}+c \quad n \neq-1 \tan x \ln |\sec x|+c
x^{-1}=\frac{1}{x} \ln |x|+c \tan a x \frac{\ln |\sec a x|}{a}+c
\mathrm{e}^x \mathrm{e}^x+c \tan (a x+b) \frac{\ln |\sec (a x+b)|}{a}+c
\mathrm{e}^{-x} -\mathrm{e}^{-x}+c \operatorname{cosec}(a x+b) \frac{1}{a}\{\ln \mid \operatorname{cosec}(a x+b)
\mathrm{e}^{a x} \frac{\mathrm{e}^{a x}}{a}+c -\cot (a x+b) \mid\}+c
\sin x -\cos x+c \sec (a x+b) \frac{1}{a}\{\ln \mid \sec (a x+b)
\sin a x \frac{-\cos a x}{a}+c +\tan (a x+b) \mid\}+c
\sin (a x+b) \frac{-\cos (a x+b)}{a}+c \cot (a x+b) \frac{1}{a}\{\ln |\sin (a x+b)|\}+c
\cos x \sin x+c \frac{1}{\sqrt{a^2-x^2}} \sin ^{-1} \frac{x}{a}+c
\cos a x \frac{\sin a x}{a}+c \frac{1}{a^2+x^2} \frac{1}{a} \tan ^{-1} \frac{x}{a}+c
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) \int x^2+9 \mathrm{~d} x=\int x^2 \mathrm{~d} x+\int 9 \mathrm{~d} x \quad \text { using linearity }

=\frac{x^3}{3}+9 x+c \quad \text { using Table } 13.1

Note that only a single constant of integration is required.

(b)  \int 3 t^4-\sqrt{t} \mathrm{~d} t=3 \int t^4 \mathrm{~d} t-\int t^{1 / 2} \mathrm{~d} t \quad \text { using linearity }

\begin{aligned}& =3\left(\frac{t^5}{5}\right)-\frac{t^{3 / 2}}{3 / 2}+c \quad \text { using Table } 13.1 \\& =\frac{3 t^5}{5}-\frac{2 t^{3 / 2}}{3}+c\end{aligned}

(c)  \int \frac{1}{x} \mathrm{~d} x=\ln |x|+c \quad \text { using Table 13.1. }

Sometimes it is convenient to use the laws of logarithms to rewrite answers involving logarithms. For example, we can write  \ln |x|+c \text { as } \ln |x|+\ln |A| \text { where } c=\ln |A| \text {. }  This enables us to write the integral as

\int \frac{1}{x} \mathrm{~d} x=\ln |A x|

(d) \int(t+2)^2 \mathrm{~d} t=\int t^2+4 t+4 \mathrm{~d} t=\frac{t^3}{3}+2 t^2+4 t+c

(e) \int \frac{1}{z}+z \mathrm{~d} z=\ln |z|+\frac{z^2}{2}+c

(f) \int 4 \mathrm{e}^{2 z} \mathrm{~d} z=\frac{4 \mathrm{e}^{2 z}}{2}+c=2 \mathrm{e}^{2 z}+c

(g) \int 3 \sin (4 t) \mathrm{d} t=-\frac{3 \cos 4 t}{4}+c

(h) \int 4 \cos (9 x+2) d x=\frac{4 \sin (9 x+2)}{9}+c

(i) \int 3 \mathrm{e}^{2 z} \mathrm{~d} z=\frac{3 \mathrm{e}^{2 z}}{2}+c

(j) \int \frac{\sin x+\cos x}{2} \mathrm{~d} x=\frac{-\cos x+\sin x}{2}+c

(k) \int 2 t-\mathrm{e}^t \mathrm{~d} t=t^2-\mathrm{e}^t+c

(l) \int \tan \left(\frac{z-1}{2}\right) \mathrm{d} z=2 \ln \left|\sec \left(\frac{z-1}{2}\right)\right|+c

(m) \int \mathrm{e}^t+\mathrm{e}^{-t} \mathrm{~d} t=\mathrm{e}^t-\mathrm{e}^{-t}+c

(n) \int 3 \sec (4 x-1) \mathrm{d} x=\frac{3}{4} \ln |\sec (4 x-1)+\tan (4 x-1)|+c

(o) \int 2 \cot 9 x d x=\frac{2}{9} \ln |\sin 9 x|+c

(p) \int 7 \operatorname{cosec}(\pi / 3) \mathrm{d} x=\{7 \operatorname{cosec}(\pi / 3)\} x+c \quad \text { as } \operatorname{cosec}(\pi / 3) \text { is a constant }

Related Answered Questions

Question: 13.11

Verified Answer:

Figure 13.13 illustrates the required area. From t...
Question: 13.9

Verified Answer:

Figure 13.11 illustrates the required area. [latex...
Question: 13.8

Verified Answer:

\begin{aligned}\text { Area } & =\int_1...
Question: 13.7

Verified Answer:

(a) Let I stand for  \int_1^2 x^2+1 d x[/la...
Question: 13.6

Verified Answer:

(a) Using the identities in Table 3.1 we find [lat...
Question: 13.5

Verified Answer:

Powers of trigonometric functions, for example  [l...
Question: 13.2

Verified Answer:

From Table 10.1 we find \frac{\mathrm{d}}{\...
Question: 13.1

Verified Answer:

We need to find a function which, when differentia...