Using Equations 5.75 through 5.78, estimate the percentage error in the fission and absorption rates when the fast neutrons are ignored in a thermal water reactor fuel rod.
\mathrm{R}_{\mathrm{f}}=\Sigma_{\mathrm{f2}}\phi_{2}=0.9310\times10^{15}\,\mathrm{firssions/s/cm^{3}} (5.75)
\mathrm{R}_{\mathrm{a}}=\Sigma_{\mathrm{a2}}\phi_{2}=1.085\times10^{15}\,\mathrm{absorptions/s/cm^{3}} (5.76)
\mathrm{R}_{\mathrm{f}}=\Sigma_{\mathrm{f1}}\phi_{1}+\Sigma_{\mathrm{f2}}\phi_{2}=0.9370\times10^{15}\,\mathrm{firssions/s/cm^{3}} (5.77)
\mathrm{R}_{\mathrm{a}}=\Sigma_{\mathrm{al}}{\phi}_{1}+\Sigma_{\mathrm{a2}}{\phi}_{2}=1.1042\times10^{15}\,\mathrm{absorptions/s/cm^{3}} (5.78)
According to Equations 5.75 and 5.77, the difference in the fission rate is 0.9370 × 10^{15} fissions/s/cm³ – 0.9310 × 10^{15} fissions/s/cm³ = 0.006 × 10^{15} fissions/s/cm³ ≈ 0.6%. When we use Equations 5.76 and 5.78, we find that the difference in the absorption rate is 1.1042 × 10^{15} absorptions/s/cm³ – 1.085 × 10^{15} absorptions/s/cm³ = 0.0192 × 10^{15} absorptions/s/cm³ ≈ 1.7%. Hence, there is a greater error in the absorption rate than there is in the fission rate in this case.