Question 8.1: Using the Hooke’s law data in Table 8.1, compute the least-s......

Using the Hooke’s law data in Table 8.1, compute the least-squares estimates of the spring constant and the unloaded length of the spring. Write the equation of the least-squares line.

TABLE 8.1 Measured lengths of a spring under various loads

Weight (lb)

x

Measured Length (in.)

y

Weight (lb)

x

Measured Length (in.)

y

0.0 5.06 2.0 5.40
0.2 5.01 2.2 5.57
0.4 5.12 2.4 5.47
0.6 5.13 2.6 5.53
0.8 5.14 2.8 5.61
1.0 5.16 3.0 5.59
1.2 5.25 3.2 5.61
1.4 5.19 3.4 5.75
1.6 5.24 3.6 5.68
1.8 5.46 3.8 5.80
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The estimate of the spring constant is \hat{\beta}_{1}, and the estimate of the unloaded length is \hat{\beta}_{0}. From Table 8.1 we compute:

\overline{x} = 1.9000        \overline{y} = 5.3885

\sum\limits_{i=1}^{n}{(x_{i}\ −\ \overline{x})^{2}} = \sum\limits_{i=1}^{n}{x^{2}_{i}}\ −\ n \overline{x}^{2} = 26.6000

\sum\limits_{i=1}^{n}{(x_{i}\ −\ \overline{x} )(y_{i} \ −\ \overline{y} )} = \sum\limits_{i=1}^{n}{x_{i} y_{i}\ −\ n \overline{x}\ \overline{y}} = 5.4430

     Using Equations (8.5) and (8.6), we compute

                               \hat{\beta}_{1} = \frac{\sum\limits_{i=1}^{n}{(x_{i}\ −\ \overline{x})(y_{i}\ −\ \overline{y})}}{\sum\limits_{i=1}^{n}{} (x_{i}\ −\ \overline{x})^{2}} (8.5)

                               \hat{\beta}_{0} = \overline{y}\ −\ \hat{\beta } _{1}\overline{x} (8.6)

                               \hat{\beta}_{1} = \frac{ 5.4430}{26.6000} = 0.2046

                               \hat{\beta}_{0} = 5.3885\ − \ (0.2046)(1.9000) = 4.9997

      The equation of the least-squares line is y = \hat{\beta}_{0} +\hat{\beta}_{1}x. Substituting the computed values for \hat{\beta}_{0} and \hat{\beta}_{1}, we obtain

y = 4.9997 + 0.2046x

Related Answered Questions

Question: 8.7

Verified Answer:

This requires a hypothesis test. The null and alte...
Question: 8.17

Verified Answer:

The estimated coefficient of Pause is {\hat...
Question: 8.16

Verified Answer:

From the output, the estimated coefficient is −1.8...
Question: 8.15

Verified Answer:

The observed value of goodput (Table 8.2) is y = 8...