Question 6.8: Using the manufacturer’s data in Table 6.1, calculate the ma......

Using the manufacturer’s data in Table 6.1, calculate the machine parameters in the d-q axes.

TABLE 6.1
Generator Data
Description Symbol Data
Generator
112.1 MVA, 2-pole, 13.8 kV, 0.85 PF, 95.285 MW, 4690 A, 0.56 SCR, 235 field V, wye connected
Per unit reactance data, direct axis
Saturated synchronous X_{dv} 1.949
Unsaturated synchronous X_{d} 1.949
Saturated transient X_{dv}^{\prime} 0.207
Unsaturated transient X_{d}^{\prime} 0.278
Saturated subtransient X_{dv}^{\prime \prime} 0.164
Unsaturated subtransient X_{d}^{\prime \prime} 0.193
Saturated negative sequence X_{2v} 0.137
Unsaturated negative sequence X_{2I} 0.185
Saturated zero sequence X_{0v} 0.092
Leakage reactance, overexcited X_{0I} 0.111
Leakage reactance, underexcited X_{LM,OXE}
X_{LM,UXE}
0.164
0.164
Per unit reactance data, quadrature axis
Saturated synchronous X_{qv} 1.858
Unsaturated synchronous X_{q} 1.858
Unsaturated transient X_{q}^{\prime} 0.434
Saturated subtransient X_{qv}^{\prime \prime} 0.140
Unsaturated subtransient X_{q}^{\prime \prime} 0.192
Field time constant data, direct axis
Open circuit T_{d0}^{\prime} 5.615
Three-phase short-circuit transient T_{d3}^{\prime} 0.597
Line-to-line short-circuit transient T_{d2}^{\prime} 0.927
Line-to-neutral short-circuit transient T_{d1}^{\prime} 1.124
Short-circuit subtransient T_{d}^{\prime \prime} 0.015
Open circuit subtransient T_{d0}^{\prime \prime} 0.022
Field time constant data quadrature axis
Open circuit T_{q0}^{\prime} 0.451
Three-phase short-circuit transient T_{q}^{\prime} 0.451
Short-circuit subtransient T_{q}^{\prime \prime} 0.015
Open circuit subtransient T_{q0}^{\prime \prime} 0.046
Armature dc component time constant data
Three-phase short circuit T_{a3} 0.330
Line-to-line short circuit T_{a2} 0.330
Line-to-neutral short circuit T_{a1} 0.294
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Applying the equations in Section 6.9.1:
L_{ad} = L_{d} – l_{l} = 1.949 – 0.164 = 1.785 \ pu = kM_{F} = kM_{D} = M_{R}
L_{aq} = L_{q} – l_{l} = 1.858 – 0.164 = 1.694 \ pu = kM_{Q}
l_{f} = (1.758)(0.278 – 0.164)=(1.964 – 0.278) = 0.121 \ pu
L_{F} = 0.121 + 1.785 = 1.906 \ pu

l_{kd} = (1.785)(0.121)(0.193 – 0.164)/\{(1.785)(0.164) – (1.096)(0.193 – 0.164)\} = 0.026 \ pu

L_{D} = 0.026 + 1.785 = 1.811 \ pu
l_{kq} = (1.694)(0.192 – 0.164)/(1.858 – 0.192)  =0.028 \ pu
L_{Q} = 0.028 + 1.694 = 1.722 \ pu
T_{do}^{\prime} = 5.615s = 2116.85 \ rad
r_{F} = 1.906/2116.85 = 1.005 × 10^{-5} \ pu
r_{D} =\frac{ (1.811)(1.906) \ – \ 1.785^2}{(0.015)(377)(1.906)}(\frac{0.193}{0.278})  = 0.0131 \ pu
r_{Q} =(\frac{ 0.192}{1.858}) (\frac{ 1.722}{0.015 \ × \ 377 })= 0.031 \ pu
Note that in Table 6.1, as the data is in per unit, we consider X_{d} = L_{d}, \ X_{l} = l_{l}, etc. The per unit system for synchronous machines is not straightforward and variations in the literature exist. Reference [6] provides further reading.

Related Answered Questions

Question: 6.4

Verified Answer:

In the steady state, all the currents and flux lin...