Question 6.SP.4: Utilize the r-parameter equivalent circuit of Fig. 6-10(b) t......

Utilize the r-parameter equivalent circuit of Fig. 6-10(b) to find the voltage gain ratio A_v = v_L/v_i for the CE amplifier circuit of Fig. 3-10.

6.10
3.10
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The small-signal equivalent circuit for the amplifier is drawn in Fig. 6-11.    After finding the Thévenin equivalent for the network to the left of terminals B, E, we may write
v_{b e} = {\frac{R_{B}}{R_{B}  +  R_{i}}}\,v_{i} + {\frac{R_{B}R_{i}}{R_{B}  +  R_{i}}}\,i_{b}                 (1)

Ohm’s law at the output requires that
v_{ce} = v_{L} = {\frac{R_{C}R_{L}}{R_{C}  +  R_{L}}}\,i_{c}                 (2)

Applying KVL around the B, E, mesh and around the C, E mesh while noting that i_e = i_c + i_b yields, respectively,
v_{b e} = -r_{b}i_{b}  –  r_{e}i_{e} = -(r_{b} + r_{e})i_{b}  –  r_{e}i_{c}                  (3)

and                  v_{c e} = -r_{e}i_{e} + r_{m}i_{b}  –  (1  –  \alpha)r_{c}i_{c} = -(r_{e}  –  r_{m})i_{b}  –  [(1  –  \alpha)r_{c} + r_{e}]i_{c}                  (4)

Equating (1) to (3) and (2) to (4) allows formulation of the system of linear equations

\begin{bmatrix} -\left(r_{b} + r_{e} + \frac{R_{B}R_{i}}{R_{B}   +  R_{i}}\right)\frac{R_{B}  +  R_{i}}{R_{B}} & -\frac{r_{\mathrm{e}}(R_{B}  +  R_{i})}{R_{B}} \\ -(r_{e}  –  r_{m}) & -\left[(1  –  \alpha)r_{c} + r_{e} + \frac{R_{C}R_{L}}{R_{C}  +  R_{L}}\right] \end{bmatrix} \begin{bmatrix} i_b \\ i_c \end{bmatrix} = \begin{bmatrix} v_i \\ 0 \end{bmatrix}

from which, by Cramer’s rule, i_{c} = \Delta_2/\Delta, where

\Delta = \frac{R_{B}  +  R_{i}}{R_{B}}\left\{\left(r_{b} + r_{e} + \frac{R_{B}R_{i}}{R_{B}   +  R_{i}}\right) \left[(1  –  \alpha)r_{c} + r_{e} + \frac{R_{C}R_{L}}{R_{C}  +  R_{L}}\right]  –  r_e(r_{e}  –  r_{m}) \right\}
\Delta_2 = (r_{e}  –  r_{m})v_i

Then                    A_{v} = {\frac{v_{L}}{v_{i}}} = {\frac{(R_{L}||R_{C})i_{C}}{v_{i}}} = {\frac{R_{L}R_{C}}{R_{L}  +  R_{C}}}{\frac{r_{e}  –  r_{m}}{\Delta}}

6.11

Related Answered Questions