Water at 59 F flows through a straight section of a 6-in-ID cast-iron pipe with an average velocity of 4 fps. The pipe is 120 ft long, and there is an increase in elevation of 2 ft from the inlet of the pipe to its exit.
Find the power required to produce this flow rate for the specified conditions.
The control volume in this case is the pipe and the water it encloses. Applying the energy equation to this control volume, we obtain
\frac{\delta Q}{d t}-\frac{\delta W_{s}}{d t}-\frac{\delta W_{\mu}}{d t}=\iint_{\mathrm{c.s.}}\rho\left(e+\frac{P}{\rho}\right)({\bf v}\cdot{\bf n})\mathrm{~}d{ A}+\frac{\partial}{\partial t}\int \iint_{{ c.v.}}\rho e\,d{ V} (6-10)
An evaluation of each term yields
{\frac{\delta Q}{d t}}=0~~~~~~~~~{\frac{\delta W_{s}}{d t}}={\dot{W}}
\iint_{\mathrm{c.s.}}\rho\!\left(e+\frac{P}{\rho}\right)({\bf v}\!\cdot\!{\bf n})\ d{A}=\rho A v_{\mathrm{avg}}\biggl(\frac{v_{2}^{2}}{2}+g y_{2}+\frac{P_{2}}{\rho}+u_{2}-\frac{v_{1}^{2}}{2}-g y_{1}-\frac{P_{1}}{\rho}-u_{1}\biggr)
\frac{\partial}{\partial t}\iiint_{\mathrm{c.v.}}\rho e\,d V=0
and
\frac{\delta W_{\mu}}{d t}=0
The applicable form of the energy equation written on a unit mass basis is now
\dot{W}/\dot{m}=\frac{v_{1}^{2}-v_{2}^{2}}{2}+g(y_{1}-y_{2})+\frac{P_{1}-P_{2}}{\rho}+u_{1}-u_{2}
and with the internal energy change written as gh_{L}, the frictional head loss, the expression for w becomes
\dot{W}/\dot{m}=\frac{v_{1}^{2}-v_{2}^{2}}{2}+g(y_{1}-y_{2})+\frac{P_{1}-P_{2}}{\rho}-g h_{L}
Assuming the fluid at both ends of the control volume to be at atmospheric pressure, (P_{1}-P_{2})/\rho=0, and for a pipe of constant cross section (v_{1}^{2}-v_{2}^{2})/2=0, giving for {\dot{W}}/{\dot{m}}
{\dot{W}}/{\dot{m}}=g(y_{1}-y_{2})-g h_{L}
Evaluating h_{L}, we have
\mathrm{Re}={\frac{(\textstyle{\frac{1}{2}})(4)}{1.22\times10^{-5}}}=164,000
\frac{e}{D}=0.0017\quad\mathrm{(from\:Figure~13.2)}
{f_{f}}=0.0059~~~\left(\mathrm{from\,equation}\left(13-15\mathrm{a}\right)\right)
yielding
h_{L}={\frac{2(0.0059)(120\,\mathrm{ft})\left(16\,\mathrm{ft}^{2}/s^{2}\right)}{(0.5\,\mathrm{ft})(32.2\,\mathrm{ft}\!/s^{2})}}=1.401\,\mathrm{ft}
The power required to produce the specified flow conditions thus becomes
\dot{W}=\frac{-g((-2\mathrm{f}t)-1.401\,\mathrm{ft})}{550\,\mathrm{ft}\,\mathrm{lb}_{\mathrm{f}}/\mathrm{hp-s}}\left[\frac{62.3\ \mathrm{lb}_{{\mathrm{m}}}/{\mathrm{ft}}^{3}}{32.2\ \mathrm{lb}_{\mathrm{m}}\ {\mathrm{ft}}/{\mathrm{s}}^{2}\ \mathrm{lb}_{\mathrm{f}}}\left(\frac{\pi}{4}\right)\left(\frac{1}{2}\,\mathrm{ft}\right)^{2}\left(4\frac{\mathrm{ft}}{\mathrm{s}}\right)\right]
=0.300\,\mathrm{hp}