Holooly Plus Logo

Question 14.1: Water flow is produced by a centrifugal pump with the follow......

Water flow is produced by a centrifugal pump with the following dimensions:

\begin{array}{lccc}{{r_{1}=6\,\mathrm{cm}}} & \beta _{1} = 33^{\circ }\\ {{r_{2}=10.5\,\mathrm{cm}}} & \beta _{2} = 21^{\circ }\\ {{L=4.75\,\mathrm{cm}}}\end{array}

At a rotational speed of 1200 rpm determine

(a) the design flow rate

(b) the power added to the flow

(c) the maximum pressure head at the pump discharge

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

To experience minimum losses, equation (14-11) must be satisfied; thus,

v_{r1}\,=\,r_{1}\omega\,\tan\beta_{1}

\quad =\,(0.06\,\mathrm{m})\Bigl(1200\,{\frac{\mathrm{rev}}{\mathrm{min}}}\Bigr)\Bigl({\frac{2\pi\,\mathrm{rad}}{\mathrm{rev}}}\Bigr)\Bigl({\frac{\mathrm{min}}{60\,\mathrm{s}}}\Bigr)(\mathrm{tan}\ 33^{\circ}\Bigr) \quad \quad \quad \quad (14-11)

\quad=4.896\,\mathrm{m/s}

The corresponding flow rate is

\dot{\mathrm{V}}=2\pi r_{1}L v_{r1}

\quad=2\pi(0.06\,\mathrm{m})(0.0475\,\mathrm{m})(4.896\,\mathrm{m}/s)

\quad=0.0877\,{\mathrm{m}}^{3}/{\mathrm{s}}\qquad(1390\,\mathrm{gpm})\quad \quad \quad \quad (a)

The power imparted to the flow is expressed by equation (14-10):

\dot{W}=\frac{\delta W_{\mathrm{s}}}{d t}=M_{\mathrm{z}}\omega=\rho\dot{V}r_{2}\omega\left[r_{2}\omega-\frac{\dot{ V}}{2\pi r_{2}L}\mathrm{cot}\,\beta_{2}\right]        (14-10)

\dot{\mathrm{{W}}}=\rho\dot{\mathrm{{V}}}r_{2}\omega\biggl[r_{2}\omega-{\frac{\dot {\mathrm{{V}}}}{2\pi r L}}\mathrm{{cot}}\beta_{2}\biggr]

Evaluate the following:

\omega={\bigg(}1200{\frac{\mathrm{rev}}{\mathrm{min}}}{\bigg)}{\bigg(}2\pi{\frac{\mathrm{rad}}{\mathrm{rev}}}{\bigg)}{\bigg(}{\frac{\mathrm{min}}{60\,s}}{\bigg)}=125.7\,\mathrm{rad/s}

\rho \dot{V} r_{2}\omega\;=(1000\;{\mathrm{kg/m}}^{3})(0.0877\,{\mathrm{m}}^{3}/{\mathrm{s}})(0.105\,{\mathrm{m}})(125.7\,{\mathrm{rad/s}})

=\,1157\,{\mathrm{kg}}\cdot{\mathrm{m/s}}

we obtain

\dot{\mathrm{W}}=(1157\,{\mathrm{kg}}\cdot{\mathrm{m/s}})[(0.105\,{\mathrm{m}})(125.7\,{\mathrm{rad/s}})-(2.80\,{\mathrm{m/s}})({\mathrm{cot}}\,21)]

\quad=6830\,\mathrm{W}=6.83\,\mathrm{kW}\quad \quad \quad \quad (b)

Equation (14-1) expresses the net pressure head as

{\frac{P_{2}-P_{1}}{\rho g}}=-{\frac{\dot{W}}{\dot{m}g}}-h_{L}      (14-1)

The maximum value, with negligible losses, will be

{\frac{P_{2}-P_{1}}{\rho g}}={\frac{6830\,\mathrm{W}}{(1000\,\mathrm{kg/m^{3}})(0.0877\,\mathrm{m^{3}}/{\mathrm{s(9.81~m/s^{2})}}}}

=7.94\operatorname*{m}\operatorname{H}_{2}\operatorname{O}\operatorname{gage}

{\mathrm{For~}}P_{1}=1{\mathrm{~atm}}=14.7{\mathrm{~psi}}=10.33{\mathrm{~m~H_{2}O}}

P_{2}=(7.94+10.33)\mathrm{m}\,\mathrm{H}_{2}\mathrm{O}=18.3\,\mathrm{m}\,\mathrm{H}_{2}\mathrm{O}\,\mathrm{(26\,psi)}\quad \quad \quad \quad (c)

The actual discharge pressure will be less than this owing to friction and other irreversible losses.

Related Answered Questions