Holooly Plus Logo

Question 16.14: What are the concentrations of Ag^+ , Ag(NH3)^+, and Ag(NH3)......

What are the concentrations of Ag^{+}  ,  Ag(NH_{3})^{+},  and  Ag(NH_{3})_{2}  ^{+} in a solution prepared by adding 0.10 mol of AgNO_{3} to 1.0 L of 3.0 M NH_{3}?  K_{f} = 1.7\times 10^{7},  K_{1} = 2.1\times 10^{3},  and  K_{2} = 8.1\times 10^{3}.

STRATEGY

Because K_{1},  K_{2},  and  K_{f}  for  Ag(NH_{3})_{2}  ^{+} are all large numbers, we surmise that nearly all the Ag^{+}  from  AgNO_{3} will be converted to Ag(NH_{3})_{2}  ^{+}:

Ag^{+}(aq)+2  NH_{3}(aq)\xrightleftharpoons{}Ag(NH_{3})_{2}  ^{+}(aq)               K_{f}=1.7\times 10^{7}

To calculate the concentrations, it’s convenient to imagine that 100% of the Ag^{+} is converted to Ag(NH_{3})_{2}  ^{+}, followed by a tiny amount of back-reaction [dissociation of Ag(NH_{3})_{2}  ^{+}] to give a small equilibrium concentration of Ag^{+}.

IDENTIFY
Known Unknown
Molarity and volume of NH_{3} (3.0 M, 1.0 L) [Ag^{+}],  [Ag(NH_{3})^{+}],  [Ag(NH_{3})_{2}  ^{+}]
Amount of AgNO_{3} (0.10 mol)
Equilibrium constants and reactions
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

First determine concentrations assuming 100% conversion to Ag(NH_{3})_{2}  ^{+}. The conversion of 0.10 mol/L of Ag^{+} to Ag(NH_{3})_{2}  ^{+} consumes 0.20 mol/L of NH_{3} and the following concentrations are obtained:

[Ag^{+}]= 0  M

 

[Ag(NH_{3})_{2}  ^{+}]=0.10  M

 

[NH_{3}]=3.0-0.20=2.8  M

Next set up an equilibrium table for the dissociation of Ag(NH_{3})_{2}  ^{+}:

Table 1

The dissociation of x mol/L of Ag(NH_{3})_{2}  ^{+} in the back-reaction produces x mol/L of Ag^{+} and 2x mol/L of NH_{3}. Therefore, the equilibrium concentrations (in mol/L) are

[Ag(NH_{3})_{2}  ^{+}]=0.10  –  x

 

[Ag^{+}]= x

 

[NH_{3}]=2.8 + 2x

Substituting the equilibrium concentrations into the expression for K_{f} and making the approximation that x is negligible compared to 0.10 (and to 2.8) gives

K_{1}=1.7\times 10^{7}=\frac{[Ag(NH_{3})_{2}  ^{+}]}{[Ag^{+}][NH_{3}]^{2}}=\frac{0.10  –  x}{(x)(2.8  +  2x)^{2}}=\frac{0.10}{(x)(2.8)^{2}}

 

[Ag^{+}]=x=\frac{0.10}{(1.7\times 10^{7})(2.8)^{2}}=7.5\times 10^{-10}  M

 

[Ag(NH_{3})_{2}  ^{+}]=0.10  –  x=0.10-(7.5\times 10^{-10})=0.10  M

The concentration of Ag(NH_{3})^{+} can be calculated from either of the stepwise equilibria. Let’s use the equilibrium equation for the formation of Ag(NH_{3})^{+} from Ag^{+}:

K_{1}=\frac{[Ag(NH_{3})^{+}]}{[Ag^{+}][NH_{3}]}=2.1\times 10^{3}

 

[Ag(NH_{3})^{+}]=K_{1}[Ag^{+}][NH_{3}]=(2.1\times 10^{3})(7.5\times 10^{-10})(2.8)=4.4\times 10^{-6}  M

Thus, nearly all the Ag^{+} is in the form of Ag(NH_{3})_{2}  ^{+}.

Table 1

Ag^{+}(aq) + 2  NH_{3}(aq) \xrightleftharpoons{} Ag(NH_{3})_{2}  ^{+}(aq)
Initial concentration (M) 0 2.8 0.10
Change (M) + x + 2x – x
Equilibrium concentration (M) x 2.8 + 2x 0.10 – x

Related Answered Questions

Question: 16.12

Verified Answer:

(a) The equilibrium table for the dissolution of [...
Question: 16.16

Verified Answer:

After the two solutions are mixed, the combined so...
Question: 16.10

Verified Answer:

STRATEGY AND SOLUTION First write the balanced equ...