What would be the reading on a barometer containing carbon tetrachloride at 68°F at a time when the atmospheric pressure was equivalent to 30.26 inHg ?
p_{\mathrm{atm}}=30.26 \mathrm{inHg} \times \frac{14.696 \mathrm{psia}}{29.92 \mathrm{inHg}}=14.86 \mathrm{psia}
Table A.4 for carbon tetrachloride at 68°F :
\rho=3.08 \mathrm{slugs} / \mathrm{ft}^{3}, \quad p_{\text {vapor }}=1.90 \mathrm{psia}
From Eq. (3.8): y=\frac{p_{\text {atm }}-p_{\text {vapor }}}{\rho g}
\begin{aligned}& =\frac{(14.86-1.90) 144}{3.08(322)}\end{aligned}
= 18.82 ft of carbon tetrachloride
p_{\mathrm{atm}}=\gamma y+p_{\text {vapor }} (3.8)
TABLE A.4 Physical properties of common liquids at standard sea-level atmospheric pressure { }^a | ||||||||
Liquid | \textbf {Temprature,} \\ \textbf{T} | \textbf{Density, } \\ \mathbf{\rho} | \textbf{Specific gravity,} {}^b \\ \mathbf{\rho} | \textbf{Absolute viscosity,} {}^c\\ \mathbf{\mu} | \textbf{Surface tension,}\\ \mathbf{\sigma} | \textbf{Vapor perssure, }\\ \mathbf{P_v} | \textbf{Specific heat,}\\ \mathbf{c} | \textbf{Bulk modulus of elasticity,}\\ \mathbf{E_v} |
{ }^{\circ} \mathbf{F} | \textbf{ slug/ff }{ }^3 | – | 10^{-6} \mathbf{lb} \cdot \mathbf{sec} / \mathbf{ft}^2 | \mathbf{lb} / \mathbf{ft} | \textbf { psia } | \textbf { psi } | \begin{aligned}& \mathbf{f t} \cdot \mathbf{l b} /\left(\text { slug } \cdot{ }^{\circ} \mathbf{R}\right) \\& =\mathbf{ft}^2 /\left(\sec ^2 \cdot{ }^{\circ} \mathbf{R}\right)\end{aligned} | |
Benzene | 68^{\circ} \mathbf{F} | 1.70 | 0.88 | 14.37 | 0.0020 | 1.45 | 150,000 | 10,290 |
Carbon tetrachloride | 68^{\circ} \mathbf{F} | 3.08 | 1.594 | 20.35 | 0.0018 | 1.90 | 160,000 | 5,035 |
Crude oil | 68^{\circ} \mathbf{F} | 1.66 | 0.86 | 150 | 0.002 | – | – | – |
Gasoline | 68^{\circ} \mathbf{F} | 1.32 | 0.68 | 6.1 | – | 8.0 | – | 12,500 |
Glycerin | 68^{\circ} \mathbf{F} | 2.44 | 1.26 | 31,200 | 0.0043 | 0.000002 | 630,000 | 14,270 |
Hydrogen | -430^{\circ} \mathbf{F} | 0.143 | 0.074 | 0.435 | 0.0002 | 3.1 | – | – |
Kerosene | 68^{\circ} \mathbf{F} | 1.57 | 0.81 | 40 | 0.0017 | 0.46 | – | 12,000 |
Mercury | 68^{\circ} \mathbf{F} | 26.3 | 13.56 | 33 | 0.032 | 0.000025 | 3,800,000 | 834 |
Oxygen | -320^{\circ} \mathbf{F} | 2.34 | 1.21 | 5.8 | 0.001 | 3.1 | – | ∼5,760 |
SAE 10 oil | 68^{\circ} \mathbf{F} | 1.78 | 0.92 | 1,700 | 0.0025 | – | – | – |
SAE 30 oil | 68^{\circ} \mathbf{F} | 1.78 | 0.92 | 9,200 | 0.0024 | – | – | – |
Fresh water | 68^{\circ} \mathbf{F} | 1.936 | 0.999 | 21.0 | 0.0050 | 0.34 | 318,000 | 25,000 |
Seawater | 68^{\circ} \mathbf{F} | 1.985 | 1.024 | 22.5 | 0.0050 | 0.34 | 336,000 | 23,500 |
{ }^{\circ} \mathbf{C} | \mathbf{kg} / \mathbf{m}^3 | 10^{-3} \mathbf{~N} \cdot \mathbf{s} / \mathbf{m}^2 | \mathbf{N} / \mathbf{m} | \mathbf{kN} / \mathbf{m}^2 \mathbf{abs} | 10^6 \mathbf{~N} / \mathbf{m}^2 | \begin{aligned}& \mathbf{N} \cdot \mathbf{m} /(\mathbf{kg} \cdot \mathbf{K}) \\& =\mathbf{m}^2 /\left(\mathbf{s}^2 \cdot \mathbf{K}\right)\end{aligned} | ||
Benzene | 20^{\circ} \mathbf{C} | 876 | 0.88 | 0.65 | 0.029 | 10.0 | 1030 | 1720 |
Carbon tetrachloride | 20^{\circ} \mathbf{C} | 1588 | 1.594 | 0.97 | 0.026 | 13.1 | 1100 | 842 |
Crude oil | 20^{\circ} \mathbf{C} | 856 | 0.86 | 7.2 | 0.03 | – | – | – |
Gasoline | 20^{\circ} \mathbf{C} | 680 | 0.68 | 0.29 | – | 55.2 | – | 2100 |
Glycerin | 20^{\circ} \mathbf{C} | 1258 | 1.26 | 1494 | 0.063 | 0.000014 | 4344 | 2386 |
Hydrogen | -257^{\circ} \mathbf{C} | 73.7 | 0.074 | 0.021 | 0.0029 | 21.4 | – | – |
Kerosene | 20^{\circ} \mathbf{C} | 808 | 0.81 | 1.92 | 0.025 | 3.20 | – | 2000 |
Mercury | 20^{\circ} \mathbf{C} | 13550 | 13.56 | 1.56 | 0.51 | 0.00017 | 26200 | 139.4 |
Oxygen | -195^{\circ} \mathbf{C} | 1206 | 1.21 | 0.278 | 0.015 | 21.4 | – | ∼964 |
SAE 10 oil | 20^{\circ} \mathbf{C} | 918 | 0.92 | 82 | 0.037 | – | – | – |
SAE 30 oil | 20^{\circ} \mathbf{C} | 918 | 0.92 | 440 | 0.036 | – | – | – |
Fresh water | 20^{\circ} \mathbf{C} | 998 | 0.999 | 1.00 | 0.073 | 2.34 | 2171 | 4187 |
Seawater | 20^{\circ} \mathbf{C} | 1023 | 1.024 | 1.07 | 0.073 | 2.34 | 2300 | 3933 |
{ }^a In these tables, if (for example, for benzene at 68^{\circ} \mathrm{F} ) \mu is given as 1.437 and the units are 10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2 then \mu=1.437 \times 10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2
{ }^b Relative to pure water at 60^{\circ} \mathrm{F}. { }^c For viscosity, see also Figs. A.1 and A.2. |