Question 7.3: Where Is the Sun? Find the altitude angle and azimuth angle ......

Where Is the Sun? Find the altitude angle and azimuth angle for the sun at 3:00 P.M. solar time in Boulder, Colorado (latitude 40º) on the summer solstice.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Since it is the solstice we know, without computing, that the solar declination δ is 23.45º. Since 3:00 P.M. is three hours after solar noon, from (7.10) we obtain

H \ = \ \left(\frac{15º}{h}\right) \ \cdot \ \left(\text{hours before solar noon}\right) \ = \ \frac{15º}{h} \ \cdot \ \left(-3 \ h\right) \ = \ −45º

Using (7.8), the altitude angle is

\begin{matrix} \sin \ \beta & = \ \cos \ L \ \cos \ \delta \ \cos \ H \ + \ \sin \ L \ \sin \ \delta \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \ \ \ \\ & = \ \cos \ 40º \ \cos \ 23.45º \ \cos \left(-45º\right) \ + \ \sin \ 40º \ \sin \ 23.45º \ = \ 0.7527 \\ \quad \ \ \beta & = \ \sin^{-1} \left(0.7527\right) \ = \ 48.8º \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \ \ \ \end{matrix}

From (7.9) the sine of the azimuth angle is

\begin{matrix} \sin \ \phi _{S} & = \ \frac{\cos \ \delta \ \sin \ H}{\cos \ \beta} \quad \quad \quad \quad \quad \quad \quad \quad \\ & = \ \frac{\cos \ 23.45º \ \sin \ \left(-45º\right)}{\cos \ 48.8º} \ = \ −0.9848 \end{matrix}

But the arcsine is ambiguous and two possibilities exist:

\begin{matrix} \phi_{S} & = \ \sin^{-1} \left(−0.9848\right) \ = \ −80º \quad \left(80º \text{west of south}\right) \ \ \ \ \ \ \\ \text{or} & \phi_{S} \ = \ 180 \ – \ \left(-80\right) \ = \ 260º \quad \quad \left(100º \text{west of south}\right) \end{matrix}

To decide which of these two options is correct, we apply (7.11):

\text{if} \quad \cos \ H \ \geq \ \frac{\tan \ \delta}{\tan \ L}, \quad \text{then} \ \left|\phi_{S}\right| \ \leq \ 90º; \quad \text{otherwise} \ \left|\phi_{S}\right| \ \gt \ 90º (7.11)
\cos \ H \ = \ \cos \left(-45º\right) \ = \ 0.707 \quad \text{and} \quad \frac{\tan \ \delta}{\tan \ L} \ = \ \frac{\tan \ 23.45º}{\tan \ 40º} \ = \ 0.517

Since \cos \ H \ \geq \ \frac{\tan \ \delta}{\tan \ L} we conclude that the azimuth angle is

\phi_{S} \ = \ -80º \quad \left(80º \text{west of south}\right)

Related Answered Questions

Question: 7.5

Verified Answer:

From Table 7.1, July 1 is day number n = 182. Usin...