Question 25.9: Write out the cell equation for the cell Fe(s)|Fe^2+(aq, 0.1......

Write out the cell equation for the cell

Fe(s)|Fe^{2+}(aq, 0.100\ M)||Fe^{2+}(aq, 2.00\ M)|Fe(s)

Calculate the voltage generated by this “concentration cell” at 25.0°C. Why do you think this cell is called a concentration cell?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The two half reactions and the corresponding values of E^{\circ}_{red} from Table 25.3 are

Fe^{2+}(aq, 2.00\ M) + 2\ e^− → Fe(s) \qquad E^{\circ}_{red} = –0.45\ V

Fe(s) → Fe^{2+}(aq, 0.100\ M) + 2\ e^− \qquad E^{\circ}_{ox}= –E^{\circ}_{red} = +0.45\ V

Because the oxidation half reaction is the opposite of the reduction half reaction for this cell, E^{\circ}_{ox} = –E^{\circ}_{red}, and so

E^{\circ}_{cell} = E^{\circ}_{red} + E^{\circ}_{ox} = (–0.45\ V) + (0.45\ V) = 0\ V

Thus, the cell generates no voltage at standard conditions. However, the concentrations of the various species given are not at standard conditions and so we must apply the Nernst equation (Equation 25.13),

E_{cell} =E^{\circ}_{cell} – \left(\frac{0.02570\ V}{ν_e} \right) ln\ Q \qquad (at\ 25.0^{\circ}C)            (25.13)

E_{cell} =E^{\circ}_{cell} – \left(\frac{0.02570\ V}{ν_e} \right) ln\ Q\\=E^{\circ}_{cell} – \left(\frac{0.02570\ V}{2} \right) ln\frac{[Fe^{2+}(aq,\ 0.100\ M]/M}{[Fe^{2+}(aq,\ 2.00\ M]/M} \\=0\ V – (0.01285\ V)ln\left(\frac{0.100}{2.00} \right) = 0.03850\ V

Thus, the cell generates 38.50 mV of electricity at 25.0°C. This sort of cell is called a concentration cell because it uses the difference in concentrations between the two solutions to generate a voltage. This is the electrical equivalent of the osmotic pressure discussed in Section 16-5.

TABLE 25.3 Standard reduction voltages at 25.0°C for aqueous solutions (see also Appendix G)*
Electrode half reaction E^{\circ}_{red}/V
 

 

 

 

\uparrow
increasing strength
of oxidizing agents

Acidic solutions  

 

 

 

increasing strength
of reducing agents
\downarrow

F_{2}(g) + 2\ e^− → 2\ F^−(aq) +2.866
O_{3}(g) + 2\ H^+(aq) + 2\ e^− → O_{2}(g) + H_2O(l ) +2.076
Co^{3+}(aq) + e^− → Co^{2+}(aq) +1.92
Cl_{2}(g) + 2\ e^− → 2\ Cl^−(aq) +1.358
O_{2}(g) + 4\ H^+(aq) + 4\ e^− → 2\ H_2O(l ) +1.229
Pt^{2+}(aq) + 2\ e^– → Pt(s) +1.18
NO_{3}^{–}(aq) + 4\ H^+(aq) + 3\ e^– → NO(g) + 2\ H_2O(l ) +0.957
Ag^+(aq) + e^− → Ag(s) +0.7996
Cu^+(aq) + e^− → Cu(s) +0.521
Cu^{+2}(aq) +2\ e^− → Cu(s) +0.342
Hg_2Cl_2(s) + 2\ e^− → 2\ Hg(l ) + 2\ Cl^−(aq) +0.268
AgCl(s) + e^− → Ag(s) + Cl^−(aq) +0.2223
Cu^{2+}(aq) + e^− → Cu^+(aq) +0.153
2\ H^+(aq) + 2\ e^− → H_2(g) +0.0
Pb^{2+}(aq) + 2\ e^− → Pb(s) -0.126
V^{3+}(aq) + e^− → V^{2+}(aq) -0.255
Fe^{2+}(aq) + 2\ e^– → Fe(s) –0.447
Zn^{2+}(aq) + 2\ e^− → Zn(s) -0.762
Mn^{2+}(aq) + 2\ e^– → Mn(s) –1.185
Al^{3+}(aq) + 3\ e^− → Al(s) -1.662
H_2(g) + 2\ e^− → 2\ H^−(aq) -2.23
Mg^{2+}(aq) + 2\ e^− → Mg(s) -2.372
Na^+(aq) + e^− → Na(s) -2.71
Ca^{2+}(aq) + 2\ e^– → Ca(s) –2.868
K^+(aq) + e^– → K(s) –2.931
Li^+(aq) + e^− → Li(s) -3.0401
Basic solutions
O_2(g) + 2\ H_2O(l ) + 4\ e^− → 4\ OH^−(aq) +0.401
Cu(OH)_2(s) + 2\ e^− → Cu(s) + 2\ OH^−(aq) -0.222
Fe(OH)_3(s) + e^– → Fe(OH)_2(s) + OH^–(aq) –0.56
2\ H_2O(l ) + 2\ e^− → H_2(g) + 2\ OH^−(aq) -0.8277
2\ SO_{3}^{2−}(aq) + 2\ H_2O(l) + 2\ e^− → S_{2}O_{4}^{2−}(aq) + 4\ OH^−(aq) -1.12
*Data from CRC Handbook of Chemistry and Physics, 87th ed., ed. David R. Lide, CRC Press, 2006–2007

Related Answered Questions