Write the Boolean expression and truth table for the logic gate circuit shown in Fig. 16.8.
The Boolean expression is developed as shown below.
The Boolean expression is
\begin{aligned} \mathrm{X} & =\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}+\overline{\overline{\mathrm{A}}+\mathrm{B}} \\ & =\mathrm{Y}+\mathrm{Z} \end{aligned}where \mathrm{Y}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}
and \mathrm{Z}=\overline{\overline{\mathrm{A}}+\mathrm{B}}
Now let us write the truth table. We first write the various combinations of 0 and 1 for the two inputs, A and B. There are 2^N = 2^2 = 4 combinations. For each row of inputs, we will calculate Y and Z, respectively. Then we would add Y and Z, to get X.
Truth table
\begin{array}{|ccccc|} \hline \mathrm{A} & \mathrm{B} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} \\ \hline 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ \hline \end{array}