Question 26.7: Λ Decay In Conceptual Example 26.4, you saw one possible dec...

Λ Decay

In Conceptual Example 26.4, you saw one possible decay of the lambda particle (a baryon): \Lambda \rightarrow p^{+}+\pi^{-}. Describe the quark transformation in this decay and in the one that follows it.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table 26.6, the Λ’s quark composition is uds. You already know that the proton’s
quark composition is uud, and the negative pion s quark composition (also in Table 26.6) is \bar{u} d .

TABLE 26.6 Quark Compositions of Selected Mesons and Baryons
Quark composition Meson Particle Quark composition Baryon Particle
u \bar{d} \pi^{+} uud p^{+}
\bar{u} d \pi^{-} udd n
u \bar{S} K ^{+} uds Λ
d \bar{s} K ^{0} uus \Sigma^{+}
c \bar{d} D ^{+} uds \Sigma^{0}
c \bar{u} D ^{0} uss \Xi^{0}
u \bar{b} B ^{+} dss \Xi^{-}
d \bar{b} B ^{0} sss \Omega^{-}
b \bar{b} ϒ udc \Lambda_{C}^{+}
c \bar{c} J / \Psi uuu \Delta^{++}
s \bar{b} B _{S}^{0} uud \Delta^{+}
c \bar{b} B _{C}^{0} udd \Delta^{0}
S \bar{S} φ ddd \Delta^{-}

\text { Therefore, the underlying transformation in the decay } \Lambda \rightarrow p^{+}+\pi^{-} \text {is from } u d s \text { to } u u d \text { and } \bar{u} d .

You can picture this as a strange quark changing into a down quark, and a pair u \bar{u} being created.
There’s no problem with conservation laws when a quark and its antiquark are created, because all the conserved numbers (including charge) cancel.
The secondary decay is that of the pion, which you can see from Table 26.4 is

TABLE 26.4 Table of Hadrons
Charm number C Strangeness number S Baryon number B Spin Main decay modes Mean lifetime (s) Rest energy (MeV) Anti- particle Symbol Particle name
Mesons

0

0

0

0

0

0

0

0

\mu^{+} v_{\mu}.

2 \gamma

2.6 \times 10^{-8}.

8.4 \times 10^{-17}

140

135

\pi^{+}.

Self

\pi^{-}.

\pi^{0}

Pion

0

0

0

1

1

1

0

0

0

0

0

0

\mu^{+} \nu_{\mu}, \pi^{+} \pi^{0}.

\pi^{+} \pi^{-}, 2 \pi^{0}.

\pi^{\pm} e^{\mp} \nu_{e}, 3 \pi^{0}.

\pi^{\pm} \mu^{\mp} \nu_{\mu}\pi^{+} \pi^{-} \pi^{0}

1.2 \times 10^{-8}.

9.0 \times 10^{-11}.

5.1 \times 10^{-8}.

494

498

498

K ^{-}

\overline{ K }_{S}^{0}.

\overline{ K }_{L}^{0}.

 

K ^{+}.

K _{S}^{0}.

K _{L}^{0}

Kaon
0 0 0 0 2 \gamma, 3 \pi^{0}

\pi^{+} \pi^{-} \pi^{0}

5 \times 10^{-19} 548 Self \eta^{0} Eta

1

1

1

0

0

1

0

0

0

0

0

0

e^{+}, K ^{\pm}, K ^{0} \overline{ K }^{0}+\text { anything }.

\text { Same as } D ^{+}.

Various

1.0 \times 10^{-12}.

4.1 \times 10^{-13}.

5.0 \times 10^{-13}

1870

1865

1968

D ^{-}.

\overline{ D }^{0}.

\overline{ D }_{S}^{-}

D ^{+}.

D ^{0}.

D _{S}^{+}

Charmed D’s

0

0

0

0

0

0

0

0

Various

Various

1.6 \times 10^{-12}.

1.5 \times 10^{-12}.

 

5280

5280

B ^{-}.

\overline{ B }^{0}

B ^{+}.

B ^{0}.

Bottom B’s
0 0 0 0 Various 10^{-20} 3097 Self J / \psi J/Psi
0 0 0 0 Various 10^{-20} 9460 Self \Upsilon(\text { IS }) Upsilon
Baryons
0 0 1 \frac{1}{2} Stable (?) 938.3 \bar{p} p Proton
0 0 1 \frac{1}{2} p e^{-}\bar{\nu}_{e} 886 939.6 \bar{n} n Neutron
0 -1 1 \frac{1}{2} p \pi^{-}, n \pi^{0} 2.6 \times 10^{-10} 1116 \bar{\Lambda} Λ Lambda

0

0

0

-1

-1

-1

1

1

1

\frac{1}{2}.

\frac{1}{2}.

\frac{1}{2}.

p \pi^{0}, n \pi^{+}.

\Lambda \gamma.

n \pi^{-}.

8.0 \times 10^{-11}.

7.4 \times 10^{-20}.

1.5 \times 10^{-10}.

1189

1193

1197

\bar{\Sigma}^{-}.

\bar{\Sigma}^{0}.

\bar{\Sigma}^{+}.

 

\Sigma^{+}.

\Sigma^{0}.

\Sigma^{-}

Sigmas

0

0

-2

-2

1

1

\frac{1}{2}.

\frac{1}{2}

\Lambda \pi^{0}.

\Lambda \pi^{-}

2.9 \times 10^{-10}.

1.6 \times 10^{-10}

1315

1321

\bar{\Xi}^{0}.

\Xi^{+}.

\Xi^{0}.

\Xi^{-}.

Xi
0 -3 1 \frac{3}{2} \Lambda K ^{-}, \Xi^{0} \pi^{-} 0.82 \times 10^{-10} 1672 \Omega^{+} \Omega^{-} Omega
1 0 1 \frac{1}{2} Various 2.0 \times 10^{-13} 2286 \bar{\Lambda}_{C}^{-} \Lambda_{C}^{-} Charmed lambda

\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}.

\text { This is interesting in that the } \pi^{-} \text {(quark composition } \bar{u} d \text { ) } gets replaced by leptons, which contain no quarks. You can think of this as the down quark changing to an up (as in \beta^{-} \text {decay), } followed by annihilation of the resulting u \bar{u} \text { pair. }

REFLECT Note that the annihilation of the pair \text { и } \bar{u}in the last step is just the reverse of this pair’s creation in the original lambda decay.

Related Answered Questions

Question: 26.6

Verified Answer:

Recall from Chapter 25 that positron decay can be ...
Question: 26.5

Verified Answer:

The particles here are all leptons. With the muon ...
Question: 26.2

Verified Answer:

As shown in Equation 26.2, the mass of a mediating...