Question 6.35: 300 kg/min of steam (2 bar, 0.98 dry) flows through a given ...

300 kg/min of steam (2 bar, 0.98 dry) flows through a given stage of a reaction turbine. The exit angle of fixed blades as well as moving blades is 20° and 3.68 kW of power is developed. If the rotor speed is 360 r.p.m. and tip leakage is 5 per cent, calculate the mean drum diameter and the blade height. The axial flow velocity is 0.8 times the blade velocity.                                                                                                                                                                     (Roorkee University)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Rate of flow of steam through the turbine,    \dot{m}_{s}   =  \frac{300}{60}   =  5  kg/s
Pressure and condition of steam, p = 2 bar, x = 0.98.
The exit angles of fixed blades as well as moving blades, α = φ = 20°
Power developed,                             P = 3.68 kW
Speed of the rotor,                            N = 360 r.p.m.
Tip leakage                                          = 5 per cent
Axial flow velocity,                              C_{f}   =   0.8   C_{bl}   (blade velocity)
Refer Fig. 49.

Mean drum diameter, D :

Mean blade velocity,                                C_{bl}   =  \frac{πDN}{60}  =  \frac{πD    ×     360}{60}  = 18.85 D m/s

Power developed,                             P =  \frac{\dot{m}_{s} C_{bl} C_{w}}{1000}

or                                            3.67 = \frac{(5    ×    0.95)   ×    18.85   D    ×    C_{w} }{1000}

∴                                                            C_{w} =  \frac{3.67      ×  1000}{(5    ×    0.95)   ×    18.85   D}  =  \frac{40.988}{D}

Assuming Parson’s reaction turbine, we have

C_{f_1}    =   C_{1}     sin    α        or    C_{1}  =  \frac{C_{f_1}  }{sin    α}  =  \frac{0.8    C_{bl}  }{sin    α}  =  \frac{0.8   ×    18.85    D}{sin     20°} = 44.091 D
(C_{f_1}   =  C_{f_0}  =    C_{f})

Also,                                                C_{w}   =   2  C_{1}    cos   α   –  C_{bl}    or          \frac{40.988}{D} = 2 × 44.091  D  \cos  20° – 18.85  D = 64.01  D

or                         40.988 = 64.01 D²    or    D = 0.8 m or 800 mm.

Blade height, h :

Mean steam flow rate,      \dot{m}_{s}   =  \frac{πDhC_{f}}{x v_{g}} 

or                            (5 × 0.95) =  \frac{π    ×   0.8    ×   h    ×   C_{1}     sin    α}{0.98   ×    0.885}  =  \frac{π    ×   0.8    ×   h    ×   (44.091  D      ×    sin       20°)}{0.98   ×    0.885}

(At 2 bar :   v_{g} = 0.885 kg/m³)

or                                h =  \frac{(5     ×    0.95)    ×    0.98   ×    0.885}{π    ×   0.8    ×   (44.091    ×    0.80      ×    0.3420)}    = 0.1359 m        or        135.9 mm.

634

Related Answered Questions