Question 3.25: A 10 kVA 440/220 V, 50 Hz single-phase transformer gave the ...

A 10 kVA 440/220 V, 50 Hz single-phase transformer gave the following test results when both the following tests were conducted on the high-voltage side:
Open circuit test : 440 V, 1.0 A, 100 W
Short circuit test : 20 V, 22.7 A, 130 W.
Using the test data, calculate the efficiency and voltage regulation at 0.8 power factor lagging.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Full-load current on the high-voltage side = \frac{10  ×  1000}{440} = 22.7  A

This shows that the short-circuit test has been conducted on full load. The wattmeter reading, therefore, represents the full-load copper loss.

W_{cu} = 130  W   and from oc test data,
W_{c} = 100  W

Full-load efficiency is calculated as

\eta = \frac{Output}{Output  +  W_{cu}  +  W_{c}} ×  100

= \frac{10  ×  0.8}{10  ×  0.8  +  0.13  +  0.1} ×  100

= 97.2 per cent

Calculation of voltage regulation

Current,                          I_{1}= \frac{kVA}{V_{1}} = \frac{10  ×  1000}{440} = 22.7  A.

From the short-circuit test data, wattmeter reading can be taken as equal to copper losses in the windings.

W_{SC} = 130 = I_{1}^{2}  R_{e}^{′} = ( 22.7)²  R_{e} ^{′}

Therefore,                      R_{e}^{′} =\frac{130}{( 22.7)²} = 0.25  Ω.

Z_{e} ^{′} = \frac{V_{SC}}{I_{SC}} = \frac{ 20}{22.7} = 0.88  Ω.

Z_{e} ^{2} = R_{e} ^{2}\ ^{′} + X_{e} ^{2}\ ^{′}

X_{e}^{′} = \sqrt{(0.88)²  –  (0.25)²} = 0.84  Ω.

\cosΦ = 0.8, \sinΦ = 0.6

Regulation                     = \frac{(I_{1}  R_{e}^{′}  \cosΦ  +  I_{1}  X_{e}^{′}  \sinΦ) }{V_{1}}  ×  100

= \frac{(22.7  ×  0.25  ×  0.8  +  22.7  ×  0.84  ×  0.6)}{440}  ×  100

= \frac{(4.54  +  11.44)}{440}  ×  100 = 3.63 per cent

Related Answered Questions