Question 6.15: A 1000. g sample of liquid Hg undergoes a reversible transfo...

A 1000. g sample of liquid Hg undergoes a reversible transformation from an initial state P_{i}=1.00 bar , T_{i}=300. K to a final state P_{f}=300. bar, T_{f}=600.K. The density of Hg is 13,534 kg m^{-3},\beta=1.81 × 10^{-4}K^{-1}, C_{p}=27.98 J mol^{-1} K^{-1} and \kappa=3.91 × 10^{-6} bar^{-1}, in the range of the variables in this problem. Recall from Section 3.5 tha C_{P}-C_{V}=\left( TV\beta^{2} /\kappa \right), and that C_{P}\approx C_{V} for liquids and solids.
a. Calculate \Delta U and \Delta H  for the transformation. Describe the path assumed for the calculation.
b. Compare the relative contributions to \Delta U and \Delta H from the change in pressure and the change in temperature. Can the contribution from the change in pressure be neglected?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Because U is a state function, \Delta U is independent of the path. We choose the reversible path P_{i}=1.00 bar , T_{i}=300. K\to P_{i}=1.00  bar, T_{f}=600. K\to P_{f}=300.  bar, T_{f}=600. K . Note that because we have assumed that all the material constants are independent of P and T in the range of interest, the numerical values calculated will depend slightly on the path chosen. However, if the P and T dependence of the material constant were properly accounted for, all paths would give the same value of \Delta U.

\Delta U =\int_{T_{i}}^{T_{f}}C_{P}dT + \int_{V_{i}}^{V_{f}}\frac{\beta T-\kappa P}{\kappa}dV

Using the definition \kappa=-1/V\left( \partial V/\partial P \right)_{T},\ln V_{f}/V_{i}=-\kappa\left( P_{f}-P_{i} \right) ,and V\left( P \right)=V_{i}e^{-\kappa\left( P-P_{i} \right)}. We can also express P\left( V \right) as P\left( V \right)=P_{i}-\left( 1/\kappa \right)\ln\left( V/V_{i} \right)

 

\Delta U =\int_{T_{i}}^{T_{f}}C_{P}dT + \int_{V_{i}}^{V_{f}}\left[ \frac{\beta t}{\kappa} -\left( P_{i}-\frac{1}{\kappa}\ln \frac{V}{V_{i}} \right)\right]dV

 

=\int_{T_{i}}^{T_{f}} C_{P}dT+\left( \frac{\beta T}{\kappa} -P_{i}\right)\int_{V_{i}}^{V_{f}}dV+\frac{1}{\kappa}\int_{V_{i}}^{V_{f}}\ln \frac{V}{V_{i}}dV

Using the standard integral  \int_{}^{}\ln\left( \chi/\alpha \right)d\chi=-\chi+\chi \ln\left( \chi/\alpha \right)

\Delta U =\int_{T_{i}}^{T_{f}}C_{P}dT +\left( \frac{\beta T}{\kappa}-P_{i} \right)\left( V_{f}-V_{i} \right)+ \frac{1}{\kappa}\left[ -V+V\ln\frac{V}{V_{i}} \right]^{V_{f}}_{V_{i}}

 

=C_{P}\left( T_{f}-T_{i} \right)+\left( \frac{\beta T}{\kappa}-P_{i} \right)\left( V_{f}-V_{i} \right)+\frac{1}{\kappa}\left( V_{i}-V_{f}+V_{f}\ln \frac{V_{f}}{V_{i}} \right)

 

V_{i}=\frac{m}{\rho}=\frac{1.000 Kg}{13534  Kg  m^{-3}}=7.389 × 10^{-5}m^{3}

 

V_{f}=V_{i}e^{-\kappa\left( P_{f} -P_{i}\right)}=7.389 × 10^{-5} m^{3}\exp\left( -3.91 × 10^{-6}  bar^{-1} × 299  bar\right)

 

=7.380 ×10^{-5} m^{3}

 

V_{f}-V_{i}=-9×10^{-8}m^{3}

 

\Delta U=\frac{1000. g}{200.59  g  mol^{-1}}× 27.98  J  mol^{-1} K^{-1}×\left( 600. K-300. K \right)

 

-\left( \frac{1.81 ×10^{-4}K^{-1}×300. K}{3.91 ×10^{-6} bar^{-1}}-1.00 bar \right)×\frac{10^{5} Pa}{1 bar}×9×10^{-8}m^{3}

 

+\frac{1}{3.91×10^{-6} bar^{-1}}×\frac{10^{5} Pa}{1 bar}×\left( ^{9×10^{-8}m^{3}+7.380×10^{-5}m^{3} }_{× \ln\frac{7.380×10^{-5}m^{3} }{7.389×10^{-5}m^{3} }} \right)

 

=41.8 × 10^{3} J -100 J+1J\approx 41.7 ×10^{3} J

As shown in Section 3.1,

V\left( P,600. K \right)=\left[ 1+\beta\left( 600.K-300. K \right) \right]V\left( P_{i},300.K \right)e^{-\kappa\left( P-P_{i} \right)}=V e^{-\kappa\left( P-P_{i} \right)}

 

\Delta H=\int_{T_{i}}^{T_{f}} C_{P}dT + \int_{P_{i}}^{P_{f}} VdP=\int_{T_{i}}^{T_{f}}C_{P}dT+ V′ e^{\kappa P_{i}}\int_{P_{i}}^{P_{f}} e^{-\kappa P} dP

 

=nC_{P,m}\left( T_{f}-T_{i} \right)+\frac{V′_{i}e^{\kappa P_{i}}}{\kappa}\left( e^{-\kappa P_{i}} -e^{-\kappa P_{f}}\right)

 

=\frac{1000.g}{200.59 g mol^{-1}}×27.98 J mol^{-1} K^{-1}×\left( 600. K-300. K \right)

 

+7.389 ×10^{-5}m^{3}×\left( 1 + 300. K×1.81 ×10^{-4}K^{-1} \right)

 

×\frac{\exp \left( 3.91×10^{-6}bar^{-1}×1 bar\right)}{-3.91×10^{-6} bar^{-1} ×\left( 1 bar/10^{5}Pa\right)}

 

×\left[  \exp \left(  – 3.91 × 10^{-6} bar^{-1 } ×1   bar\right)-\exp\left( -3.91×10^{-6} bar^{-1} × 300. bar \right)\right]

 

\Delta H=41.8 × 10^{3} J +2.29 × 10^{3} J =44.1 ×10^{3} J

The temperature dependent contribution to \Delta U is 98\% of the total change in U, and the corresponding value for \Delta H is \sim 95\%. The contribution from the change in pressure to \Delta U and to \Delta H is small.

 

 

Related Answered Questions

Question: 6.17

Verified Answer:

a. Because Ar \left( g\right) is an...