Question 12.2: A 2.0 m wide strip foundation carries a wall load of 350 kN/...

A 2.0 m wide strip foundation carries a wall load of 350 kN/m in a soil where γ = 19.0 kN/m³, c′ = 5 kN/m² and φ′ = 23°. The foundation depth is 1.5 m. Determine the factor of safety of this foundation.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For φ′ = 23° from Table 12.1,

φ′ N_c N_q N_\gamma φ′ N_c N_q N_\gamma
0 5.14 1.00 0.00 23 18.05 8.66 8.20
1 5.38 1.09 0.07 24 19.32 9.60 9.44
2 5.63 1.20 0.15 25 20.72 10.66 10.88
3 5.90 1.31 0.24 26 22.25 11.85 12.54
4 6.19 1.43 0.34 27 23.94 13.20 14.47
5 6.49 1.57 0.45 28 25.80 14.72 16.72
6 6.81 1.72 0.57 29 27.86 16.44 19.34
7 7.16 1.88 0.71 30 30.14 18.40 22.40
8 7.53 2.06 0.86 31 32.67 20.63 25.99
9 7.92 2.25 1.03 32 35.49 23.18 30.22
10 8.35 2.47 1.22 33 38.64 26.09 35.19
11 8.80 2.71 1.44 34 42.16 29.44 41.06
12 9.28 2.97 1.69 35 46.12 33.30 48.03
13 9.81 3.26 1.97 36 50.59 37.75 56.31
14 10.37 3.59 2.29 37 55.63 42.92 66.19
15 10.98 3.94 2.65 38 61.35 48.93 78.03
16 11.63 4.34 3.06 39 67.87 55.96 92.25
17 12.34 4.77 3.53 40 75.31 64.20 109.41
18 13.10 5.26 4.07 41 83.86 73.90 130.22
19 13.93 5.80 4.68 42 93.71 85.38 155.55
20 14.83 6.40 5.39 43 105.11 99.02 186.54
21 15.82 7.07 6.20 44 118.37 115.31 224.64
22 16.88 7.82 7.13 45 133.88 134.88 271.76

N_c = 18.05, N_q = 8.66, and N_\gamma = 8.20. Given: B = 2.0 m and D_f =1.5 m. For strip foundation, L\gg B. Hence B/L ≈ 0.

Shape Factors

F_{cs} = 1 +\frac{B}{L} \frac{N_q}{N_c}≈1

F_{qs} = 1 +\frac{B}{L}\tan \phi^\prime≈1

F_{\gamma s} = 1 – 0.4\frac{B}{L}≈1

Note that all three shape factors are 1.0 for all strip foundations.
Depth Factors

F_{cd} = 1 + 0.4\frac{D_f}{B}=1+0.4\frac{1.5}{2.0}=1.30

F_{qd}=1+2\tan\phi^\prime(1-\sin \phi^\prime)^2\frac{D_f}{B}=1+2\tan 25(1-\sin 25)^2\frac{1.5}{2} = 1.23
F_{\gamma d} = 1.00

Since there is no inclination in the load, all three inclination factors (F_{ci}, F_{qi}, and F_{\gamma i}) are unity.
From Eq. (12.7), the ultimate bearing capacity is given by

q_u = c^\prime N_cF_{cs}F_{cd}F_{ci} + qN_qF_{qs}F_{qd}F_{qi} +0.5 \gamma BN_\gamma F_{\gamma s}F_{\gamma d}F_{\gamma i}

= (5.0)(18.05)(1) (1.30)(1) + (1.5\times 19.0)(8.66)(1)(1.23)(1) + 0.5(19.0)(2)(8.20)(1)(1)(1)
= 576.7 kN/m²

The pressure applied on the soil is 350/2 = 175.0 kN/m². Therefore, the factor of safety is
FS = \frac{576.7}{175} = 3.30

Related Answered Questions