Question 31.2: A 20,000-ft³(566 m³) aeration pond is aerated with 15 sparge...

A 20,000-\mathrm{ft}^3\left(566 \mathrm{~m}^3\right) aeration pond is aerated with 15 spargers, each using compressed air at a rate of 15 standard cubic feet per minute \left(7.08 \times 10^{-3} \mathrm{~m}^3 / \mathrm{s}\right). The spargers will be located 15 ft (4.57 m) belowthe surface of the pond. Find the time required to raise the dissolved oxygen from 2 to 5 mg/L if the water temperature is 293 K.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Figure 31.6, the transfer factor, K_L(A / V) V, for a single sparger is 1200  \mathrm{ft}^3 / \mathrm{h}(9.44 \times\left.10^{-3} \mathrm{~m}^3 / \mathrm{s}\right) and for the system

K_L\left(\frac{A}{V}\right)=\frac{\left(9.44 \times 10^{-3} \mathrm{~m}^3 / \mathrm{s}\right)(15 \text { spargers })}{566 \mathrm{~m}^3}=2.50 \times 10^{-4} \mathrm{~s}^{-1}.

The average hydrostatic pressure of the rising air bubble is equal to the arithmetic mean of the pressure at the top and the bottom of the pond.

P_{\text {bottom }}=1 \mathrm{~atm}+\left(15  \mathrm{ft}  \mathrm{H}_2 \mathrm{O}\right)\left(0.0295 \mathrm{~atm} / \mathrm{ft}  \mathrm{H}_2 \mathrm{O}\right)

 

=1.44 \mathrm{~atm}\left(1.459 \times 10^5 \mathrm{~Pa}\right)

 

P_{\text {mean }}=\frac{1 \mathrm{~atm}+1.44 \mathrm{~atm}}{2}=1.22 \mathrm{~atm}\left(1.236 \times 10^5 \mathrm{~Pa}\right)

As the mole fraction of oxygen in air is 0.21, the partial pressure of oxygen within the bubble will equal y_{\mathrm{O}_2} P=(0.21)\left(1.236 \times 10^5 \mathrm{~Pa}\right)=2.60 \times 10^4 \mathrm{~Pa}. The equilibrium concentration of a slightly soluble gas is related to its partial pressure by Henry’s law. At 293 K, this law stipulates for oxygen

p_{\mathrm{O}_2}=\left(4.06 \times 10^9 \mathrm{~Pa} / \text { mole fraction }\right) \cdot x_{\mathrm{O}_2}

Accordingly

x_{\mathrm{O}_2}=\frac{2.60 \times 10^4 \mathrm{~Pa}}{4.06 \times 10^9 \mathrm{~Pa} / \mathrm{mol} \text { fraction }}=6.40 \times 10^{-6}

For 1 L of solution, which is essentially pure water, the equilibrium concentration in milligrams per liter can be calculated

\text { moles of water }=\frac{\left(1000 \mathrm{~cm}^3 \text { of water }\right)\left(1 \mathrm{~g} / \mathrm{cm}^3 \text { water }\right)}{18 \mathrm{~g} \text { water } / \mathrm{mol}}

 

=55.6 \mathrm{~mol} \text {. }

In the liter of water, the moles of oxygen equal

x_{\mathrm{O}_2} \cdot(\text { moles of solution })=\left(6.4 \times 10^{-6}\right)(55.6 \mathrm{~mol})=3.56 \times 10^{-4} \mathrm{~mol}

The grams of oxygen per liter equal

\left(3.56 \times 10^{-4} \mathrm{~mol}\right)(32 \mathrm{~g} / \mathrm{mol})=1.139 \times 10^{-2} \mathrm{~g} / \mathrm{L}=11.39     \mathrm{mg} / \mathrm{L}.

Using equation (31-1), we can solve for the required time

\ln \left(\frac{c_A^*-c_{A a}}{c_A^*-c_A^i}\right)=K_L a \cdot t

or

c_A=c_A^*-\left(c_A^*-c_{A o}\right) e^{-k_L a \cdot t}             (31-1)

 

t=\ln \left(\frac{c_A^*-c_{A o}}{c_A^*-c_{A t}}\right)\left(\frac{1}{K_L\left(\frac{A}{V}\right)}\right)=\ln \left(\frac{11.39-2}{11.39-5}\right)\left(\frac{1}{2.50 \times 10^{-4 / s}}\right)

 

t=1540 \mathrm{~s}.

f31.6

Related Answered Questions