Question 7.8: A 220 V dc shunt motor takes 5 A at no load. The armature re...

A 220 V dc shunt motor takes 5 A at no load. The armature resistance is 0.2 Ω and field resistance is 110 Ω. Calculate the efficiency of the motor when it takes 40 A on full load.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{aligned}&I_{f}=\frac{V}{R_{f}}=\frac{220}{110}=2  A \\&I_{L}=I_{a}+I_{f} \\ \text {or,} \quad &I_{a}=I_{L}-I_{f}\end{aligned}

At no-load,     I_{L} =5  A

therefore,      I_{a} =5-2=3  A

At no-load, when the motor output is zero, the input = V I_{L} (No-load) = 220 × 5 = 1100 W.

The whole of input is lost as I_{a}^{2}  R_{a} loss +I_{f}^{2}  R_{f} loss + Iron loss + Friction and Windage loss.

\begin{aligned}I_{a}^{2}  R_{a} &=5^{2} \times 0.2=5  W \\ I_{f}^{2}  R_{f} &=2^{2} \times 110=440  W \end{aligned}

Iron, friction, and windage losses       = 1100 − 5 − 440 = 655 W

These losses are constant losses and are same at any load. This means, on full load these losses will remain at 655 W.

At full-load,        I_{L} =40  A

\begin{aligned} I_{a} &=I_{L}-I_{f}=40-2=38  A \\ I_{a}^{2}  R_{a} &=(38)^{2} \times 0.2=289  W \\ I_{f}^{2}  R_{f} &=2^{2} \times 110=440  W\end{aligned}

Iron, friction, and windages losses        = 655 W

Total losses        = 289 + 440 + 655 = 1384 W

\begin{aligned} \text {Efficiency} \quad &=\frac{\text { Output }}{\text { Input }}=\frac{\text { Input }-\text { losses }}{\text { Input }} \\&=\frac{(220 \times 40-1384) \times 100}{220 \times 40}=84.3 \text { per cent }\end{aligned}
7.8

Related Answered Questions

Question: 7.12

Verified Answer:

Power developed,        P = E × I_{a}[/late...