Question 6.6: A [30/0/90]T graphite-epoxy laminate is cured at 175°C and t...

A [30/0/90]_{T} graphite-epoxy laminate is cured at 175°C and then cooled to room temperature (20 °C). Determine:
(a) Midplane strains and curvatures
(b) Ply strains relative to the x–y coordinate system
(c) Ply stresses relative to the x–y coordinate system
which are induced during cooldown. Use material properties listed for graphite-epoxy in Table 3 of Chap. 3, assume that each ply has a thickness of 0.125 mm, and assume no change in moisture content (i.e., assume ΔM=0).

Table 3 Nominal Material Properties for Common Unidirectional Composites
Property Glass/epoxy Kevlar/epoxy Graphite/epoxy
E_{11} 55 GPa (8.0 Msi) 100 GPa (15 Msi) 170 GPa (25 Msi)
E_{22} 16 GPa (2.3 Msi) 6 GPa (0.90 Msi) 10 GPa (1.5 Msi)
ν_{12} 0.28 0.33 0.30
G_{12} 7.6 GPa (1.1 Msi) 2.1 GPa (0.30 Msi) 13 GPa (1.9 Msi)
σ_{11}^{fT} 1050 MPa (150 ksi) 1380 MPa (200 ksi) 1500 MPa (218 ksi)
σ_{11}^{fC} 690 MPa (100 ksi) 280 MPa (40 ksi) 1200 MPa (175 ksi)
σ_{22}^{yT} 45 MPa (5.8 ksi) 35 MPa (2.9 ksi) 50 MPa (7.25 ksi)
σ_{22}^{yC} 120 MPa (16 ksi) 105 MPa (15 ksi) 100 MPa (14.5 ksi)
σ_{22}^{fT} 55 MPa (7.0 ksi) 45 MPa (4.3 ksi) 70 MPa (10 ksi)
σ_{22}^{fC} 140 MPa (20 ksi) 140 Msi (20 ksi) 130 MPa (18.8 ksi)
τ_{12}^{y} 40 MPa (4.4 ksi) 40 MPa (4.0 ksi) 75 MPa (10.9 ksi)
τ_{12}^{f} 70 MPa (10 ksi) 60 MPa (9 ksi) 130 MPa (22 ksi)
α_{11} 6.7  μ/m °C

(3.7 μin./in. °F)

-3.6 μm/m °C

(-2.0 μin./in. °F)

-0.9 μm/m °C

(-0.5 μin./in. °F)

α_{22} 25 μ/m °C

(14 μin./in. °F)

58 μm/m °C

(32 μin./in. °F)

27 μm/m °C

(15 μin./in. °F)

β_{11} 100 μm/m %M

(100 μin./in. %M)

175 μm/m %M

(175 μin./in. %M)

50 μm/m %M

(50 μin./in. %M)

β_{22} 1200 μm/m %M

(1200 μin./in. %M)

1700 μm/m %M

(1700 μin./in. %M)

1200 μm/m %M

(1200 μin./in. %M)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Note that this is the same laminate considered in Sample Problem 4. A side view of the laminate appears in Fig. 17.
(a) Midplane strains and curvatures. The laminate has experienced a change in temperature ΔT = (20–175) = -155°C and, consequently, is sub-jected thermal stress and moment resultants. However, no external loads are applied and there has been no change in moisture content; therefore, the stress and moment resultants and the moisture stress and moment results are zero:

\left\{\begin{matrix} N_{xx} \\ N_{yy} \\ N_{xy}\\M_{xx} \\M_{yy} \\M_{xy} \end{matrix} \right\} = \left\{\begin{matrix} N_{xx}^{M} \\ N_{yy}^{M} \\ N_{xy}^{M}\\M_{xx}^{M} \\M_{yy}^{M}\\M_{xy}^{M} \end{matrix} \right\} = \left\{\begin{matrix} 0 \\ 0 \\ 0\\ 0 \\ 0 \\ 0 \end{matrix} \right\}

he effective thermal expansion coefficients for each ply are calculated using Eq. (25) of Chap. 5, repeated here for convenience:

α_{xx} = α_{11} \cos^{2}(θ) +  α_{22} \sin^{2}(θ)

 

α_{yy} = α_{11} \sin^{2}(θ) +  α_{22}\cos^{2}(θ)

 

α_{xy} = 2 \cos(θ) \sin(θ) (α_{11}  – α_{22} )      (5.25)

From Table 3 of Chap. 3, the thermal expansion coefficients for graphite-epoxy (relative to the 1–2 coordinate system) are a_{11} = -0.9  μm/m °C and a_{22} = 27  μm/m °C . Therefore:

For ply 1 (the 30° ply):

α_{xx}^{(1)} = (-0.9  μm/m -°C ) \cos^{2} (30°)+ ( 27  μm/m -°C) \sin^{2} (30°)
=  6.08 μm/m -°C

α_{yy}^{(1)} = (-0.9  μm/m -°C ) \sin^{2} (30°)+ ( 27  μm/m -°C) \cos^{2} (30°)

 

=  20.0 μm/m -°C

 

α_{xy}^{(1)} = 2 \cos(30) \sin(30)[(-0.9 – 27 )μm/m -°C] = -24.2  μrad/°C

For ply 2 (the 0° ply):

α_{xx}^{(2)} = (-0.9  μm/m -°C ) \cos^{2} (0°)+ ( 27  μm/m -°C) \sin^{2} (0°)
=  -0.9 μm/m -°C

α_{yy}^{(2)} = (-0.9  μm/m -°C ) \sin^{2} (0°)+ ( 27  μm/m -°C) \cos^{2} (0°)

 

=  27.0 μm/m -°C

 

α_{xy}^{(2)} = 2 \cos(0°) \sin(0°)[(-0.9 – 27 )μm/m -°C] = 0  μrad/°C

For ply 3 (the 90° ply):

α_{xx}^{(3)} = (-0.9  μm/m -°C )\cos^{2} (90°)+ ( 27  μm/m -°C) \sin^{2} (90°)
=  27.0 μm/m -°C

α_{yy}^{(3)} = (-0.9  μm/m -°C ) \sin^{2} (90°)+ ( 27  μm/m -°C) \cos^{2} (90°)

 

=  -0.9 μm/m -°C

 

α_{xy}^{(3)} = 2 \cos(90°) \sin(90°)[(-0.9 – 27 )μm/m -°C] = 0  μrad/°C

Both the ply interface positions as well as the \overline{Q_{ij}} matrices for each ply were calculated as a part of Example Problem 4. Hence, we now have all the information needed to calculate the thermal stress and moment resultants, using Eqs. (41a)–(41f ). For example, Eq. (41a) is evaluated as follows:

N^{T}_{xx} = \Delta T \sum\limits_{k = 1}^{n}{\left\{\left[\overline{Q}_{11} \alpha _{xx}+ \overline{Q}_{12} \alpha _{yy} + \overline{Q}_{16} \alpha _{xy}\right]_{k}[z_{k} – z_{k-1}] \right\} } (41 a)
N^{T}_{yy} \equiv \Delta T\sum\limits_{k = 1}^{n}{\left\{\left[\overline{Q}_{12} \alpha _{xx}+ \overline{Q}_{22} \alpha _{yy} + \overline{Q}_{26} \alpha _{xy}\right]_{k}[z_{k} – z_{k-1}] \right\} } (41 b)
N^{T}_{xy} \equiv \Delta T \sum\limits_{k = 1}^{n}{\left\{\left[\overline{Q}_{16} \alpha _{xx}+ \overline{Q}_{26} \alpha _{yy} + \overline{Q}_{66} \alpha _{xy}\right]_{k}[z_{k} – z_{k-1}] \right\} } (41 c)

N^{T}_{xx} \equiv \frac{\Delta T}{2} \sum\limits_{k = 1}^{n}{\left\{\left[\overline{Q}_{11} \alpha _{xx}+ \overline{Q}_{12} \alpha _{yy} + \overline{Q}_{16} \alpha _{xy}\right]_{k}[z_{k}^{2} – z_{k-1}^{2}] \right\} } (41 d)
N^{T}_{yy} \equiv\frac{\Delta T}{2}\sum\limits_{k = 1}^{n}{\left\{\left[\overline{Q}_{12} \alpha _{xx}+ \overline{Q}_{22} \alpha _{yy} + \overline{Q}_{26} \alpha _{xy}\right]_{k}[z_{k}^{2} – z_{k-1}^{2}] \right\} } (41 e)
N^{T}_{xy} \equiv \frac{\Delta T}{2} \sum\limits_{k = 1}^{n}{\left\{\left[\overline{Q}_{16} \alpha _{xx}+ \overline{Q}_{26} \alpha _{yy} + \overline{Q}_{66} \alpha _{xy}\right]_{k}[z_{k}^{2} – z_{k-1}^{2}] \right\} } (41 f)

N^{T}_{xx} \equiv \Delta T \sum\limits_{k = 1}^{n}{\left\{\left[\overline{Q}_{11} \alpha _{xx}+ \overline{Q}_{12} \alpha _{yy} + \overline{Q}_{16} \alpha _{xy}\right]_{k}[z_{k} – z_{k-1}] \right\} }

 

N^{T}_{xx} = \Delta T \left\{([\overline{Q}_{11} \alpha _{xx}+ \overline{Q}_{12} \alpha _{yy} + \overline{Q}_{16} \alpha _{xy}]_{1}[z_{1} – z_{0}]) \right. \\+ ([\overline{Q}_{11} \alpha _{xx}+ \overline{Q}_{12} \alpha _{yy} + \overline{Q}_{16} \alpha _{xy}]_{2}[z_{2} – z_{1}]) \\ \left.+ ([\overline{Q}_{11} \alpha _{xx}+ \overline{Q}_{12} \alpha _{yy} + \overline{Q}_{16} \alpha _{xy}]_{3}[z_{3} – z_{2}]) \right\}

 

N^{T}_{xx} = (-155) \left\{([(107.6 × 10^{9}) (6.08 × 10^{-6})+(26.06 × 10^{9}) (20.0 × 10^{-6})\right. \\ + (48.13 × 10^{9}) (-24.2 × 10^{-6})][(-0.0625 + 0.1875)× 10^{-3} ])\\+ ([(107.9 × 10^{9}) (-0.9 × 10^{-6})+ (3.016 × 10^{9}) (27.0 × 10^{-6})  \\+ (0)(0 )][(  0.0625 +  0.0625) × 10^{-3} ]) + ([(10.05 × 10^{9}) (27 × 10^{-6})\\ \left.+ (3.016 × 10^{9}) (-0.9 × 10^{-6}) + (0) (0)][(0.1875 – 0.0625)× 10^{-3} ]) \right\}

 

N^{T}_{xx} = 4060N/m

The remaining thermal stress and moment resultants are calculated in similar fashion, eventually resulting in:

\left\{\begin{matrix} N_{xx}^{T} \\ N_{yy}^{T} \\ N_{xy}^{T} \\M_{xx}^{T} \\M_{yy}^{T} \\M_{xy}^{T} \end{matrix} \right\} = \left\{\begin{matrix} -4060  N/m\\ -7360  N/m\\ 2860  N/m\\ -0.62  N – m/m\\ 0.62  N – m/m\\  -0.36  N – m/m \end{matrix} \right\}

We can now calculate midplane strains and curvature using Eq. (45), which becomes:^{*}

\left\{\begin{matrix} \varepsilon _{xx}^{o} \\ \varepsilon _{yy}^{o} \\ \gamma _{xy}^{o} \\ \kappa _{xx}\\\kappa _{yy} \\ \kappa _{xy} \end{matrix} \right\} = \left[\begin{matrix} a_{11} & a_{12} & a_{16} & b_{11}& b_{12 } & b_{16} \\ a_{12} & a_{22} & a_{26} & b_{12}& b_{22} & b_{26} \\ a_{16} & a_{26} & a_{66} & b_{16} & b_{26} & b_{66} \\ b_{11}& b_{12 } & b_{16} & d_{11} & d_{12} & d_{16}\\ b_{12}& b_{22} & b_{26} & d_{12}& d_{22} & d_{26} \\b_{16} & b_{26} & b_{66} & d_{16} & d_{26} & d_{66} \end{matrix} \right] \left\{\begin{matrix} N_{xx} + N_{xx}^{T} + N_{xx}^{M}\\ N_{yy}+ N_{yy}^{T} + N_{yy}^{M} \\ N_{xy}+ N_{xy}^{T} + N_{xy}^{M} \\ M_{xx} +M_{xx}^{T} + M_{xx}^{M} \\M_{yy}+M_{yy}^{T} + M_{yy}^{M} \\M_{xy} +M_{xy}^{T} + M_{xy}^{M} \end{matrix} \right\}     (45)

\left\{\begin{matrix} \varepsilon _{xx}^{o} \\ \varepsilon _{yy}^{o} \\ \gamma _{xy}^{o} \\ \kappa _{xx}\\\kappa _{yy} \\ \kappa _{xy} \end{matrix} \right\} = \left[\begin{matrix} 3.757 \times 10^{-8} & -1.964 \times 10^{-9} & -1.038 \times 10^{-8} \\ -1.964 \times 10^{-9} & 1.037 \times 10^{-7} & -4.234 \times 10^{-8} \\ -1.038 \times 10^{-8} & -4.234 \times 10^{-8} & 2.004\times 10^{-7}\\ 1.440 × 10^{-4}&-1.866 × 10^{-5}& 3.661 × 10^{-4}\\3.905  × 10^{-6}& -6.361 × 10^{-4} & 3.251× 10^{-4}\\ 8.513 × 10^{-5} & 4.268 × 10^{4} & -1.851 × 10^{-5}\end{matrix} \begin{matrix} 1.440 × 10^{-4}&3.905 × 10^{-6}& 8.513 × 10^{-5}\\-1.866  × 10^{-5}& -6.361 × 10^{-4} & 4.268 × 10^{4}\\ 3.661 × 10^{-4} & 3.251 × 10^{-4} & -1.851 × 10^{-5}\\7.064 & -3.122  × 10^{-2} & -4.572\\ -3.122 × 10^{-2} & 6.429 & -3.620\\-4.572 & -3.620 & 17.41\end{matrix} \right] × \left\{\begin{matrix} -4060 \\ -7360  \\ 2860  \\ -0.62  \\ 0.62  \\  -0.36   \end{matrix} \right\}

 

\left\{\begin{matrix} \varepsilon _{xx}^{o} \\ \varepsilon _{yy}^{o} \\ \gamma _{xy}^{o} \\ \kappa _{xx}\\\kappa _{yy} \\ \kappa _{xy} \end{matrix} \right\} = \left\{\begin{matrix} -285  μm/m \\ -1424  μm/m \\ 908   μrad\\ -2.16  m^{-1}  \\ 10.9  m^{-1}   \\  -9.4  m^{-1}    \end{matrix} \right\}

(b) Ply strains relative to the x–y coordinate system. Ply strains may now be calculated using Eq. (12). For example, strains present at the outer surface of ply 1 (i.e., strains present at z_{o}=-0.0001875 m) are:

\left\{\begin{matrix} \varepsilon _{xx} \\ \varepsilon _{yy} \\ \gamma _{xy} \end{matrix} \right\} = \left\{\begin{matrix} \varepsilon° _{xx} \\ \varepsilon° _{yy} \\ \gamma° _{xy} \end{matrix} \right\} + z \left\{\begin{matrix} \kappa _{xx} \\ \kappa _{yy} \\ \kappa _{xy} \end{matrix} \right\}       (12)

\left\{\begin{matrix} \varepsilon _{xx} \\ \varepsilon _{yy} \\ \gamma _{xy} \end{matrix} \right\} |_{z = z_{0}}= \left\{\begin{matrix} \varepsilon° _{xx} \\ \varepsilon° _{yy} \\ \gamma° _{xy} \end{matrix} \right\} + z_{0} \left\{\begin{matrix} \kappa _{xx} \\ \kappa _{yy} \\ \kappa _{xy} \end{matrix} \right\}= \left\{\begin{matrix} -285 \times 10^{-6} m/m \\ -1424 \times 10^{-6} m/m \\ 908 \times 10^{-6} m/m \end{matrix} \right\}

 

+ ( – 0.0001875 m) \left\{\begin{matrix} -2.16 rad/m \\ 10.9  rad/m \\ – 9.4 rad/m \end{matrix} \right\} 

 

\left\{\begin{matrix} \varepsilon _{xx} \\ \varepsilon _{yy} \\ \gamma _{xy} \end{matrix} \right\} |_{z = z_{0}} = \left\{\begin{matrix} 120 μm/m \\ -3468  μm/m \\ 2672  μrad\end{matrix} \right\} 

Strains calculated at the remaining ply interface positions are summa-rized in Table 7.

Table 7 Ply Interface Strains in a [30/0/90]_{T} Graphite-Epoxy Laminate Caused by a Cooldown from 175°C to 20°C
z-coordinate (mm) \varepsilon _{xx}  (\mu m/m) \varepsilon _{yy}  (\mu m/m) \gamma  _{xy}  (\mu rad)
-0.1875 120 -3468 2672
-0.0625 -150 -2100 1500
0.0625 -420 -750 320
0.1875 -690 620 -860
Strains are referenced to the x–y coordinate system.

(c) Ply stresses relative to the x–y coordinate system. Ply stresses may now be calculated using Eq. (30) of Chap. 5, with ΔM=0. The stresses present at the outer surface of ply 1 are (i.e., at z=z_{0}):

\left\{\begin{matrix} \sigma _{xx} \\ \sigma _{yy} \\ \tau _{xy} \end{matrix} \right\} = \left[\begin{matrix} \bar{Q} _{11} & \bar{Q}_{12} & \bar{Q}_{16} \\ \bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\ \bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66} \end{matrix} \right] \left\{ \begin{matrix} \varepsilon _{xx} – \Delta T \alpha _{xx}-\Delta M \beta _{xx} \\ \varepsilon _{yy}- \Delta T \alpha _{yy}-\Delta M \beta _{yy} \\ \gamma _{xy} – \Delta T \alpha _{xy} -\Delta M \beta _{xy}\end{matrix} \right\} (30)

 

\left\{\begin{matrix} \sigma _{xx} \\ \sigma _{yy} \\ \tau _{xy} \end{matrix} \right\} |_{z = z_{0}}^{ply 1} = \left[\begin{matrix} \bar{Q} _{11} & \bar{Q}_{12} & \bar{Q}_{16} \\ \bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\ \bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66} \end{matrix} \right] |_{z = z_{0}}^{ply 1} \left\{ \begin{matrix} \varepsilon _{xx} – \Delta T \alpha _{xx} \\ \varepsilon _{yy}- \Delta T \alpha _{yy} \\ \gamma _{xy} – \Delta T \alpha _{xy} \end{matrix} \right\} |_{z =z_{0}}

 

\left\{\begin{matrix} \sigma _{xx} \\ \sigma _{yy} \\ \tau _{xy} \end{matrix} \right\} |_{z = z_{0}}^{ply 1} =  \left[\begin{matrix} 107.6 \times 10^{9} & 26.06 \times 10^{9} & 48.13 \times 10^{9} \\ 26.06 \times 10^{9} & 27.22\times 10^{9} & 21.52 \times 10^{9} \\ 48.13 \times 10^{9} & 21.52 \times 10^{9}  & 36.05 \times 10^{9} \end{matrix} \right]

 

\times \left\{\begin{matrix}  [( 120) – (-155)(6.08)]  × 10^{-6} \\ [( -3468) – (-155)(20.0)]  × 10^{-6} \\ [( 2672) – (-155)(-24.2)] × 10^{-6}\end{matrix} \right\} 

 

\left\{\begin{matrix} \sigma _{xx} \\ \sigma _{yy} \\ \tau _{xy} \end{matrix} \right\} |_{z = z_{0}}^{ply 1} = \left\{\begin{matrix} 53  MPa \\ -5.2   MPa \\ 4.8  MPa\end{matrix} \right\} 

Stresses calculated at the remaining plies and ply interface positions are summarized in Table 8.

Table 8 Ply Interface Stresses in a [30/0/90]_{T} Graphite-Epoxy Laminate Caused by a Cooldown from 175°C to 20°C
Ply number z-coordinate (mm) \sigma _{xx}  (Mpa) \sigma _{yy}  (Mpa) \tau _{xy}  (Mpa)
Ply 1 -0.1875 53 -5.2 4.8
-0.0625 3.1 -0.53 -21
Ply 2 -0.0625 -43 20 19
0.0625 -85 33 4.1
Ply 3 0.0625 35 -140 4.1
0.1875 37 92 -11
Stresses are referenced to the x–y coordinate system.
F 17

Related Answered Questions