Question 6.34: A 50% reaction turbine (with symmetrical velocity triangles)...

A 50% reaction turbine (with symmetrical velocity triangles) running at 400 r.p.m. has the exit angle of the blades as 20° and the velocity of steam relative to the blades at the exit is 1.35 times the mean blade speed. The steam flow rate is 8.33 kg/s and at a particular stage the specific volume is 1.381 m³/kg. Calculate for this stage :
(i) A suitable blade height, assuming the rotor mean diameter 12 times the blade height, and
(ii) The diagram work.                                                                                 (N.U.)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Speed,                                     N = 400 r.p.m. ; α = 20°
C_{r_0}    =   C_{1}    =    1.35   C_{bl}  ;    \dot{m}_{s}   = 8.33 kg/s
v = 1.381 m³/kg ; D = 12 h

(i) Blade height, h :
Refer Fig. 49.

Axial flow velocity,                       C_{f_1}  =    C_{f_0}   =   C_{f}   =   C_{1} \sin  α

= 1.35  C_{bl}  \sin  20°
= 0.4617   C_{bl}

Area of flow,                  A = πDh = πD ×  \frac{D}{12}  =  \frac{πD²}{12}

Mass flow rate,                                                    \dot{m}  =    \frac{A C_{f}}{v}    or           8.33 =  \frac{A  ×    0.4617   C_{bl}}{1.381}

or                                                \frac{8.33   ×    1.381 }{0.4917}       =  A   ×    C_{bl}   =  \frac{πD²}{12}     ×    \frac{πDN}{60}

or                                              24.916 =  \frac{π²D³   ×    400}{720}                                                     or                   D³  = \frac{24.919      ×     720}{π²     ×    400  }                  or     D = 1.656   m

∴               Blade height,                 h =  \frac{D}{12}  =  \frac{1.656}{12}     =  0.138  m        or          138  mm.

(ii) The diagram work :

Diagram work                             =  \dot{m}     ×      C_{bl}    (C_{w_1}    +    C_{w_0})

\dot{m}     ×      C_{bl}    (2  C_{1}    \cos   α    –  C_{bl})

= 8.33     ×      C_{bl}  (2    ×     1.35    C_{bl}  \cos  20°    –    C_{bl})   

8.33     ×      C_{bl}²  (2    ×     1.35  \cos  20°    –   1  )

= 8.33 ×  ( \frac{πDN}{60} )²   ×    1.537   =  8.33 ×   ( \frac{π   ×      1.656   ×    400}{60} )²  ×    1.537

= 15401.2 W       or      15.4 kW.

634

Related Answered Questions