Question 7.5: A beam, to be made from ASTM A36 structural steel plate, is ...

A beam, to be made from ASTM A36 structural steel plate, is to be designed to carry the static loads shown in Figure 7–16. The cross section of the beam will be rectangular with its long dimension vertical and having a thickness of 32.0 mm. Specify a suitable height for the cross section. A photograph showing a similar loading pattern in a laboratory setting can be seen in Figure 9–1.

143801 7-16
143801 9-1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective    Specify the height of the rectangular cross section.

Given          Loading pattern shown in Figure 7–16; ASTM A36 structural steel

Width of the beam to be 32.0 mm; static loads

Analysis     We will use the design procedure A from this section.

Results       Step 1. Figure 7–17 shows the completed shearing force and bending moment diagrams. The maximum bending moment is 6810 N · m between the loads, in the middle of the beam span from x = 1.2 – 3.6 m.

Step 2. From Table 7–1, for static load on a ductile material,

TABLE 7–1  Design stress guidelines: Bending stresses.
Manner of loading Ductile material Brittle material
Static \sigma_{d} = s_{y} /2 \sigma_{d} = s_{u} /6
Repeated \sigma_{d} = s_{y} /8 \sigma_{d} = s_{u} /10
Impact or shock \sigma_{d} = s_{y} /12 \sigma_{d} = s_{u} /15

\sigma_{d} = s_{y} /2

Step 3. From Appendix A–12, s_{y} = 248 MPa for ASTM A36 steel. For a static load, a design factor of N = 2 based on yield strength is reasonable. Then,

A–12  Properties of structural steels .^{a}
Ultimate strength, s_{u}^{a} Yield strength, s_{y}^{a}
Material ASTM No. and products ksi Mpa ksi Mpa Percent elongation in 2 in.
A36—carbon steel; available in shapes,plates, and bars 58 400 36 248 21
A 53—Grade B pipe 60 414 35 240 23
A242—HSLA, corrosion resistant; available in shapes, plates, and bars
70 483 50 345 21
67 462 46 317 21
63 434 42 290 21
A500—Cold-formed structural tubing
Round, Grade B 58 400 42 290 23
Round, Grade C 62 427 46 317 21
Round, Grade B 58 400 46 317 23
Round, Grade C 62 427 50 345 21
A501—Hot-formed structural tubing, round or shaped 58 400 36 248 23
A514—Quenched and tempered alloy steel; available in plate only
110 758 100 680 18
100 690 90 620 16
A572—HSLA columbium–vanadium steel; available in shapes, plates, and bars
Grade 42 60 414 42 290 24
Grade 50 65 448 50 345 21
Grade 60 75 517 60 414 18
Grade 65 80 552 65 448 17
A913—HSLA, grade 65; available in shapes only 80 552 65 448 17
A992—HSLA; available in W-shapes only 65 448 50 345 21

\sigma_{d} = \frac{ s_{y}}{N} = \frac{248  MPa}{2} = 124 MPa

Step 4. The required section modulus, S, is

S_{min} = \frac{M}{\sigma_{d}} = \frac{6810  N·m\left\lgroup \frac{1000  mm}{1  m}\right\rgroup }{124  MPa} = 54 919  mm³

Step 5. The formula for the section modulus for a rectangular section with a height h and a thickness b is

S = \frac{I}{c} = \frac{bh^{3}}{12(h/2)} = \frac{bh^{2}}{6}

For the beam in this design problem, b will be 1.25 in. Then, solving for h gives

S = \frac{bh^{3}}{12(h/2)}

h_{min} = \sqrt{\frac{6S_{min}}{b}}=\sqrt{\frac{6(54  919  mm^{3})}{32}}

h_{min} = 101.5 mm

From Appendix A–2, specify the next larger preferred size, 110 mm.

A–2     Preferred basic sizes.
Fractional (in.) Decimal (in.) SI metric (mm)
\frac{1}{64} 0.015 625 5 5.000 0.010 2.00 8.50 1.0 40
\frac{1}{32} 0.031 25 5 \frac{1}{4} 5.250 0.012 2.20 9.00 1.1 45
\frac{1}{16} 0.0625 5  \frac{1}{2} 5.500 0.016 2.40 9.50 1.2 50
\frac{3}{32} 0.093 75 5  \frac{3}{4} 5.750 0.020 2.60 10.00 1.4 55
\frac{1}{8} 0.1250 6 6.000 0.025 2.80 10.50 1.6 60
\frac{5}{32} 0.156 25 6 \frac{1}{2} 6.500 0.032 3.00 11.00 1.8 70
\frac{3}{16} 0.1875 7 7.000 0.040 3.20 11.50 2.0 80
\frac{1}{4} 0.2500 7 \frac{1}{2} 7.500 0.05 3.40 12.00 2.2 90
\frac{5}{16} 0.3125 8 8.000 0.06 3.60 12.50 2.5 100
\frac{3}{8} 0.3750 8  \frac{1}{2} 8.500 0.08 3.80 13.00 2.8 110
\frac{7}{16} 0.4375 9 9.000 0.10 4.00 13.50 3.0 120
\frac{1}{2} 0.5000  9 \frac{1}{2} 9.500 0.12 4.20 14.00 3.5 140
\frac{9}{16} 0.5625 10 10.000 0.16 4.40 14.50 4.0 160
\frac{5}{8} 0.6250  10 \frac{1}{2} 10.500 0.20 4.60 15,00 4.5 180
\frac{11}{16} 0.6875 11 11.000 0.24 4.80 15.50 5.0 200
\frac{3}{4} 0.7500  11  \frac{1}{2} 11.500 0.30 5.00 16.00 5.5 220
\frac{7}{8} 0.8750 12 12.000 0.40 5.20 16.50 6 250
1 1.000  12  \frac{1}{2} 12.500 0.50 5.40 17.00 7 280
1 \frac{1}{4} 1.250 13 13.000 0.60 5.60 17.50 8 300
1 \frac{1}{2} 1.500  13  \frac{1}{2} 13.500 0.80 5.80 18.00 9 350
1 \frac{3}{4} 1.750 14 14.000 1.00 6.00 18.50 10 400
2 2.000  14 \frac{1}{2} 14.500 1.20 6.50 19.00 11 450
2 \frac{1}{4} 2.250 1 15.000 1.40 7.00 19.50 12 500
2  \frac{1}{2} 2.500  15 \frac{1}{2} 15.500 1.60 7.50 20.00 14 550
2  \frac{3}{4} 2.750 16 16.000 1.80 8.00 16 600
3 3.000  16 \frac{1}{2} 16.500 18 700
3  \frac{1}{4} 3.250 17 17.000 20 800
3  \frac{1}{2} 3.500  17  \frac{1}{2} 17.500 22 900
3  \frac{3}{4} 3.750 18 18.000 25 1000
4 4.000 18 \frac{1}{2} 18.500 28
4 \frac{1}{4} 4.250 19 19.000 30
4 \frac{1}{2} 4.500 19  \frac{1}{2} 19.500 35
4  \frac{3}{4} 4.750 20 20.000

Comment   Because the beam is rather long there may be a tendency for it to deform laterally because of elastic instability. Lateral bracing may be required. Also, deflection should be checked using the methods discussed in Chapter 9.

143801 7-17

Related Answered Questions